Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy

Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths.

[1]  Lukas M. Eng,et al.  Accuracy and resolution limits of Kelvin probe force microscopy , 2005 .

[2]  Peter Liljeroth,et al.  Measuring the Charge State of an Adatom with Noncontact Atomic Force Microscopy , 2009, Science.

[3]  M. Spencer,et al.  Cantilever effects on the measurement of electrostatic potentials by scanning Kelvin probe microscopy , 2001 .

[4]  Jasbinder S. Sanghera,et al.  Nanoimaging of Open‐Circuit Voltage in Photovoltaic Devices , 2015 .

[5]  Hans-Jürgen Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[6]  A. Alivisatos,et al.  Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors. , 2015, Nano letters.

[7]  Kelvin probe force microscopy for local characterisation of active nanoelectronic devices , 2015, Beilstein journal of nanotechnology.

[8]  José Antonio Plaza,et al.  Special cantilever geometry for the access of higher oscillation modes in atomic force microscopy , 2006 .

[9]  Geraint Williams,et al.  Probe diameter and probe-specimen distance dependence in the lateral resolution of a scanning Kelvin probe , 2002 .

[10]  A. Jäger-Waldau,et al.  High-resolution work function imaging of single grains of semiconductor surfaces , 2002 .

[11]  Y. Sugawara,et al.  High potential sensitivity in heterodyne amplitude-modulation Kelvin probe force microscopy , 2012 .

[12]  D. Théron,et al.  Cross-talk artefacts in Kelvin probe force microscopy imaging: A comprehensive study , 2014 .

[13]  S. Hudlet,et al.  Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface , 1998 .

[14]  A. J. Weymouth,et al.  Optimizing atomic resolution of force microscopy in ambient conditions , 2013, 1303.5204.

[15]  Dynamic behavior of amplitude detection Kelvin force microscopy in ultrahigh vacuum. , 2010, Ultramicroscopy.

[16]  Sergei V. Kalinin,et al.  Open loop Kelvin probe force microscopy with single and multi-frequency excitation , 2013, Nanotechnology.

[17]  Jonas Bergqvist,et al.  Intermodulation electrostatic force microscopy for imaging surface photo-voltage , 2014, 1408.5285.

[18]  E. Delamarche,et al.  Kelvin probe force microscopy on surfaces: Investigation of the surface potential of self-assembled monolayers on gold , 1999 .

[19]  A. Jäger-Waldau,et al.  High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy , 1999 .

[20]  P. Samorí,et al.  Self‐Organization and Nanoscale Electronic Properties of Azatriphenylene‐Based Architectures: A Scanning Probe Microscopy Study , 2006 .

[21]  Arvind Raman,et al.  Equivalent point-mass models of continuous atomic force microscope probes , 2007 .

[22]  Shin-ichi Kitamura,et al.  High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope , 1998 .

[23]  Ricardo Garcia,et al.  Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy , 1999 .

[24]  M. Gros-Jean,et al.  Method to assess the grain crystallographic orientation with a submicronic spatial resolution using Kelvin probe force microscope , 2006 .

[25]  J. Munday,et al.  The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  S. Hudlet,et al.  Electrostatic forces between a metallic tip and semiconductor surfaces , 1994 .

[27]  Lukas M. Eng,et al.  Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits , 2015 .

[28]  Olga Kazakova,et al.  Standardization of surface potential measurements of graphene domains , 2013, Scientific reports.

[29]  B. Grévin,et al.  Local contact potential difference of molecular self-assemblies investigated by Kelvin probe force microscopy , 2011 .

[30]  D. Deresmes,et al.  Kelvin force microscopy at the second cantilever resonance: an out-of-vacuum crosstalk compensation setup. , 2008, Ultramicroscopy.

[31]  Sergei V. Kalinin,et al.  Surface potential at surface-interface junctions in SrTiO 3 bicrystals , 2000 .

[32]  Sascha Sadewasser,et al.  Amplitude or frequency modulation-detection in Kelvin probe force microscopy , 2003 .

[33]  Heinrich Diesinger,et al.  Noise performance of frequency modulation Kelvin force microscopy , 2014, Beilstein journal of nanotechnology.

[34]  C. V. Heer,et al.  Statistical mechanics, kinetic theory, and stochastic processes , 1972 .

[35]  Jiliang Mu,et al.  Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes , 2013, Nanoscale Research Letters.

[36]  H. K. Wickramasinghe,et al.  Surface investigations with a Kelvin probe force microscope , 1992 .

[37]  Franz J. Giessibl,et al.  Advances in atomic force microscopy , 2003, cond-mat/0305119.

[38]  A. Belcher,et al.  Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy. , 2007, Nature nanotechnology.

[39]  K. Müllen,et al.  Quantitative Measurement of the Local Surface Potential of π‐Conjugated Nanostructures: A Kelvin Probe Force Microscopy Study , 2006 .

[40]  Leo Gross,et al.  Imaging the charge distribution within a single molecule. , 2012, Nature nanotechnology.

[41]  L. Polak,et al.  Note: switching crosstalk on and off in Kelvin Probe Force Microscopy. , 2014, The Review of scientific instruments.

[42]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[43]  D. Théron,et al.  Note: Quantitative (artifact-free) surface potential measurements using Kelvin force microscopy. , 2011, The Review of scientific instruments.

[44]  H. Shigekawa,et al.  Kelvin Probe Force Microscopy without Bias-Voltage Feedback , 2007 .

[45]  Ida Lee,et al.  Measurement of electrostatic potentials above oriented single photosynthetic reaction centers , 2000 .

[46]  D. Abraham,et al.  High resolution atomic force microscopy potentiometry , 1991 .

[47]  D. Ginger,et al.  Time-resolved electrostatic force microscopy of polymer solar cells , 2006, Nature materials.

[48]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[49]  A. M. Baró,et al.  Resolution enhancement and improved data interpretation in electrostatic force microscopy , 2001 .

[50]  Albert K. Henning,et al.  Two‐dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy , 1995 .

[51]  S. Lamoreaux,et al.  Surface contact potential patches and Casimir force measurements , 2009, 0905.3421.

[52]  H. Butt,et al.  Photoinduced Degradation Studies of Organic Solar Cell Materials Using Kelvin Probe Force and Conductive Scanning Force Microscopy , 2011 .

[53]  L. Monticelli,et al.  An elevated level of cholesterol impairs self-assembly of pulmonary surfactant into a functional film. , 2007, Biophysical journal.

[54]  Andreas Stemmer,et al.  Surface potential mapping: A qualitative material contrast in SPM , 1997 .

[55]  Ahmad Ahmad,et al.  Adaptive AFM scan speed control for high aspect ratio fast structure tracking. , 2014, The Review of scientific instruments.

[56]  S. Nishiwaki,et al.  Kelvin probe force microscopy for the nano scale characterization of chalcopyrite solar cell materials and devices , 2003 .

[57]  K. A. Brown,et al.  The importance of cantilever dynamics in the interpretation of Kelvin probe force microscopy. , 2012, Journal of applied physics.

[58]  L. Eng,et al.  Kelvin probe force microscopy in application to biomolecular films: frequency modulation, amplitude modulation, and lift mode. , 2010, Ultramicroscopy.

[59]  Sumio Hosaka,et al.  Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy , 1995 .

[60]  S. Reynaud,et al.  Electrostatic patch effects in Casimir-force experiments performed in the sphere-plane geometry , 2012, 1206.6034.

[61]  J. Bechhoefer Feedback for physicists: A tutorial essay on control , 2005 .

[62]  A. Stemmer,et al.  Resolution and contrast in Kelvin probe force microscopy , 1998 .

[63]  A. Fechtenkötter,et al.  Langmuir and Langmuir-Blodgett films of amphiphilic hexa-peri-hexabenzocoronene: new phase transitions and electronic properties controlled by pressure. , 2001, Chemistry.

[64]  P. Grütter,et al.  The noise of coated cantilevers , 2012, Nanotechnology.