Latent Distance Estimation for Random Geometric Graphs

Random geometric graphs are a popular choice for a latent points generative model for networks. Their definition is based on a sample of $n$ points $X_1,X_2,\cdots,X_n$ on the Euclidean sphere~$\mathbb{S}^{d-1}$ which represents the latent positions of nodes of the network. The connection probabilities between the nodes are determined by an unknown function (referred to as the ``link'' function) evaluated at the distance between the latent points. We introduce a spectral estimator of the pairwise distance between latent points and we prove that its rate of convergence is the same as the nonparametric estimation of a function on $\mathbb{S}^{d-1}$, up to a logarithmic factor. In addition, we provide an efficient spectral algorithm to compute this estimator without any knowledge on the nonparametric link function. As a byproduct, our method can also consistently estimate the dimension $d$ of the latent space.

[1]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .

[2]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[3]  Xingde Jia,et al.  Wireless networks and random geometric graphs , 2004, 7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004. Proceedings..

[4]  B. Bollobás The evolution of random graphs , 1984 .

[5]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1998, JACM.

[6]  Carey E. Priebe,et al.  Universally Consistent Latent Position Estimation and Vertex Classification for Random Dot Product Graphs , 2012, 1207.6745.

[7]  Ery Arias-Castro,et al.  On the estimation of latent distances using graph distances , 2018, 1804.10611.

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  Tengyao Wang,et al.  A useful variant of the Davis--Kahan theorem for statisticians , 2014, 1405.0680.

[10]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[11]  Roman Vershynin,et al.  High-Dimensional Probability , 2018 .

[12]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[13]  V. Sós,et al.  Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics , 2012 .

[14]  G. Lugosi,et al.  High-dimensional random geometric graphs and their clique number , 2011 .

[15]  Mikio L. Braun,et al.  Spectral properties of the kernel matrix and their relation to kernel methods in machine learning , 2005 .

[16]  Y. D. Castro,et al.  Adaptive estimation of nonparametric geometric graphs , 2017, Mathematical Statistics and Learning.

[17]  A. Tsybakov,et al.  Oracle inequalities for network models and sparse graphon estimation , 2015, 1507.04118.

[18]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[19]  Leonard Carlitz,et al.  On Jacobi polynomials. , 1956 .

[20]  A. Bandeira,et al.  Sharp nonasymptotic bounds on the norm of random matrices with independent entries , 2014, 1408.6185.

[21]  V. Koltchinskii Asymptotics of Spectral Projections of Some Random Matrices Approximating Integral Operators , 1998 .

[22]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[23]  S. Levy,et al.  Elements of functional analysis , 1970 .

[24]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[25]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[26]  Sébastien Bubeck,et al.  Testing for high‐dimensional geometry in random graphs , 2014, Random Struct. Algorithms.

[27]  Serge Nicaise Jacobi Polynomials, Weighted Sobolev Spaces and Approximation Results of Some Singularities , 2000 .

[28]  R. Vershynin How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? , 2010, 1004.3484.

[29]  Yuan Xu,et al.  Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .

[30]  Colin McDiarmid,et al.  Learning random points from geometric graphs or orderings , 2018, Random Struct. Algorithms.

[31]  Vince Lyzinski,et al.  Laplacian Eigenmaps From Sparse, Noisy Similarity Measurements , 2016, IEEE Transactions on Signal Processing.

[32]  V. Koltchinskii,et al.  Random matrix approximation of spectra of integral operators , 2000 .

[33]  C. Priebe,et al.  Universally consistent vertex classification for latent positions graphs , 2012, 1212.1182.

[34]  Desmond J. Higham,et al.  Fitting a geometric graph to a protein-protein interaction network , 2008, Bioinform..

[35]  Tim Roughgarden,et al.  Decompositions of triangle-dense graphs , 2013, SIAM J. Comput..