Finding a walrasian equilibrium is easy for a fixed number of agents

In this work, we study the complexity of finding a Walrasian equilibrium. Our main result gives an algorithm which can compute an approximate Walrasian equilibrium in an exchange economy with general, but well-behaved, utility functions in time that is polynomial in the number of goods when the number of agents is held constant. This result has applications to macroeconomics and finance, where applications of Walrasian equilibrium theory tend to deal with many goods but a fixed number of agents.

[1]  Kamal Jain,et al.  A Polynomial Time Algorithm for Computing the Arrow-Debreu Market Equilibrium for Linear Utilities , 2004, FOCS.

[2]  Xiaotie Deng,et al.  On the complexity of equilibria , 2002, STOC '02.

[3]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[4]  T. Negishi WELFARE ECONOMICS AND EXISTENCE OF AN EQUILIBRIUM FOR A COMPETITIVE ECONOMY , 1960 .

[5]  Nikhil R. Devanur,et al.  Market Equilibria in Polynomial Time for Fixed Number of Goods or Agents , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[6]  Hugo Sonnenschein,et al.  Market Excess Demand Functions , 1972 .

[7]  Adam Wierman,et al.  A revealed preference approach to computational complexity in economics , 2011, EC '11.

[8]  R. Mantel On the characterization of aggregate excess demand , 1974 .

[9]  Kasturi R. Varadarajan,et al.  Algorithmic Game Theory: Computation of Market Equilibria by Convex Programming , 2007 .

[10]  E. Eisenberg Aggregation of Utility Functions , 1961 .

[11]  Kamal Jain,et al.  A polynomial time algorithm for computing an Arrow-Debreu market equilibrium for linear utilities , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[12]  Amin Saberi,et al.  Leontief economies encode nonzero sum two-player games , 2006, SODA '06.

[13]  K. Judd Numerical methods in economics , 1998 .

[14]  Robert M. Anderson,et al.  An Elementary Core Equivalence Theorem , 1978 .

[15]  G. Debreu,et al.  Excess demand functions , 1974 .

[16]  Sriram V. Pemmaraju,et al.  The computation of market equilibria , 2004, SIGA.

[17]  M. Magill,et al.  An equilibrium existence Theorem , 1981 .

[18]  H. Scarf The Computation of Equilibrium Prices: An Exposition , 1977 .

[19]  Nikhil R. Devanur,et al.  Market equilibrium via a primal-dual-type algorithm , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[20]  Nikhil R. Devanur,et al.  An Improved Approximation Scheme for Computing Arrow-Debreu Prices for the Linear Case , 2003, FSTTCS.

[21]  Sriram V. Pemmaraju,et al.  On the polynomial time computation of equilibria for certain exchange economies , 2005, SODA '05.

[22]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[23]  Ilya Segal,et al.  The communication requirements of social choice rules and supporting budget sets , 2007, J. Econ. Theory.

[24]  V. Vazirani Algorithmic Game Theory: Combinatorial Algorithms for Market Equilibria , 2007 .

[25]  M. Todd The Computation of Fixed Points and Applications , 1976 .

[26]  Herbert E. Scarf,et al.  A LIMIT THEOREM ON THE CORE OF AN ECONOMY , 1963, Classics in Game Theory.

[27]  E. Dierker Excess Demand Functions , 1974 .

[28]  T. Bewley,et al.  A Theorem on the Existence of Competitive Equilibria in a Market with a Finite Number of Agents and Whose Commodity Space is L , 1991 .

[29]  Andreu Mas-Colell,et al.  The Price Equilibrium Existence Problem in Topological Vector Lattice s , 1986 .

[30]  T. Sargent,et al.  Recursive Macroeconomic Theory , 2000 .

[31]  Tim Roughgarden,et al.  Algorithmic game theory , 2010, Commun. ACM.

[32]  Ruta Mehta,et al.  A complementary pivot algorithm for markets under separable, piecewise-linear concave utilities , 2012, STOC '12.

[33]  R. Starr Quasi-Equilibria in Markets with Non-Convex Preferences , 1969 .

[34]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[35]  Xi Chen,et al.  Computing Nash Equilibria: Approximation and Smoothed Complexity , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[36]  Kim C. Border,et al.  Fixed point theorems with applications to economics and game theory: Fixed point theorems for correspondences , 1985 .

[37]  Vijay V. Vazirani,et al.  Eisenberg-Gale markets: algorithms and structural properties , 2007, STOC '07.