All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers.

Passively modelocked diode-pumped solid-state lasers (DPSSLs) with pulse repetition rates in the gigahertz regime suffer from an increased tendency for Q-switching instabilities. Low saturation fluence intracavity saturable absorbers - such as the semiconductor saturable absorber mirrors (SESAMs) - can solve this problem up to a certain average output power limited by the onset of SESAM damage. Here we present a passive stabilization mechanism, an all-optical Q-switching limiter, to reduce the impact of Q-switching instabilities and increase the potential output power of SESAM modelocked lasers in the gigahertz regime. With a proper cavity design a Kerr lens induced negative saturable absorber clamps the maximum fluence on the SESAM and therefore limits the onset of Q-switching instabilities. No critical cavity alignment is required because this Q-switching limiter acts well within the cavity stability regime. Using a proper cavity design, a high-power diode-pumped Yb:CALGO solid-state laser generated sub-100 fs pulses with an average output power of 4.1 W at a pulse repetition rate of 5 GHz. With a pulse duration of 96 fs we can achieve a peak power as high as 7.5 kW directly from the SESAM modelocked laser oscillator without any further external pulse amplification and/or pulse compression. We present a quantitative analysis of this Kerr lens induced Q-switching limiter and its impact on modelocked operation. Our work provides a route to compact high-power multi-gigahertz frequency combs based on SESAM modelocked diode-pumped solid-state lasers without any additional external amplification or pulse compression.

[1]  Avalon Photonics,et al.  New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers , 2005 .

[2]  Jan Boehm NATURAL USER INTERFACE SENSORS FOR HUMAN BODY MEASUREMENT , 2012 .

[3]  S. Yamashita,et al.  5-GHz pulsed fiber Fabry-Pe/spl acute/rot laser mode-locked using carbon nanotubes , 2005, IEEE Photonics Technology Letters.

[4]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[5]  Alexander Klenner,et al.  Gigahertz frequency comb from a diode-pumped solid-state laser. , 2014, Optics express.

[6]  U. Keller,et al.  Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers , 1995 .

[7]  J. Didierjean,et al.  47-fs diode-pumped Yb3+:CaGdAlO4 laser. , 2006, Optics letters.

[8]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[9]  Ursula Keller,et al.  Soliton mode-locking with saturable absorbers , 1996 .

[10]  Rüdiger Paschotta,et al.  Q-switching stability limits of continuous-wave passive mode locking , 1999 .

[11]  Rüdiger Paschotta,et al.  Picosecond pulse sources with multi-GHz repetition rates and high output power , 2004 .

[12]  A. Klenner,et al.  SESAM modelocked Yb:CaGdAlO4 laser in the soliton modelocking regime with positive intracavity dispersion. , 2014, Optics express.

[13]  Matthias Golling,et al.  Toward Millijoule-Level High-Power Ultrafast Thin-Disk Oscillators , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  B. Nebendahl,et al.  Single-laser 32.5 Tbit/s Nyquist WDM transmission , 2012, IEEE/OSA Journal of Optical Communications and Networking.

[15]  A. Chin,et al.  Catastrophic Optical Damage in High-Power, Broad-Area Laser Diodes , 2009 .

[16]  M. Kirchner,et al.  Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[17]  Johan Petit,et al.  Laser emission with low quantum defect in Yb: CaGdAlO4. , 2005, Optics letters.

[18]  Akira Ozawa,et al.  Kerr-lens mode-locked Yb:KYW laser at 3.3-GHz repetition rate , 2012, CLEO 2012.

[19]  Katrin Paschke,et al.  12W high-brightness single-frequency DBR tapered diode laser , 2008 .

[20]  A. Schlatter,et al.  Nearly QuantumNoise Limited Timing Jitter fromMiniature Er:Yb:Glass Lasers , 2005 .

[21]  David A. B. Miller,et al.  Receiver-less optical clock injection for clock distribution networks , 2003 .

[22]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[23]  K. Suzuki,et al.  Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  Sandro De Silvestri,et al.  ABCD matrix analysis of propagation of gaussian beams through Kerr media , 1993 .

[25]  K. Weingarten,et al.  Semiconductor saturable absorber mirror structures with low saturation fluence , 2005 .

[26]  Francesca Parmigiani,et al.  26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing , 2011 .

[27]  David A. B. Miller,et al.  The benefits of ultrashort optical pulses in optically interconnected systems , 2003 .

[28]  M. Golling,et al.  SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Alexander Klenner,et al.  High peak power gigahertz Yb:CALGO laser. , 2014, Optics express.

[30]  Matthias Golling,et al.  SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation. , 2013, Optics letters.

[31]  Frequency-resolved coherent LIDAR using a femtosecond fiber laser , 2006, QELS 2006.

[32]  Scott A. Diddams,et al.  10-GHz Self-Referenced Optical Frequency Comb , 2009, Science.

[33]  R Gebs,et al.  High-speed asynchronous optical sampling with sub-50fs time resolution. , 2010, Optics express.

[34]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[35]  Frederick J. O'Donnell,et al.  Optically sampled analog-to-digital converters , 2001 .

[36]  Ursula Keller,et al.  Optical characterization of semiconductor saturable absorbers , 2004 .

[37]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[38]  Ursula Keller,et al.  Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight , 2010 .

[39]  Avi Pe'er,et al.  A Review of Cavity Design for Kerr Lens Mode-Locked Solid-State Lasers , 2013, 1501.01158.

[40]  U. Keller,et al.  High precision optical characterization of semiconductor saturable absorber mirrors (SESAMs) , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[41]  G. Erbert,et al.  Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz. , 2012, Optics express.

[42]  Ursula Keller,et al.  Passively modelocked surface-emitting semiconductor lasers , 2006 .

[43]  M Hanna,et al.  Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping. , 2007, Optics letters.

[44]  P. Petropoulos,et al.  Single-laser 32.5 Tbit/s Nyquist-WDM , 2012, 2012 International Conference on Photonics in Switching (PS).

[45]  A. Yariv,et al.  The application of Gaussian beam. Formalism to optical propagation in nonlinear media , 1978 .

[46]  Shinji Yamashita,et al.  Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. , 2011, Optics express.

[47]  Mansoor Sheik-Bahae,et al.  Nonlinear refraction and optical limiting in thick media , 1991 .

[48]  A. Ozawa,et al.  6-GHz, Kerr-lens mode-locked Yb:Lu 2 O 3 ceramic laser for comb-resolved broadband spectroscopy , 2013 .

[49]  P. Georges,et al.  Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements , 2004, IEEE Journal of Quantum Electronics.

[50]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[51]  D. Miller,et al.  Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. , 1992, Optics letters.