Micro-crystallography comes of age.

The latest revolution in macromolecular crystallography was incited by the development of dedicated, user friendly, micro-crystallography beam lines. Brilliant X-ray beams of diameter 20 μm or less, now available at most synchrotron sources, enable structure determination from samples that previously were inaccessible. Relative to traditional crystallography, crystals with one or more small dimensions have diffraction patterns with vastly improved signal-to-noise when recorded with an appropriately matched beam size. Structures can be solved from isolated, well diffracting regions within inhomogeneous samples. This review summarizes the technological requirements and approaches to producing micro-beams and how they continue to change the practice of crystallography.

[1]  Christian Riekel,et al.  Recent developments in microdiffraction on protein crystals , 2004 .

[2]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.

[3]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.

[4]  D. Stuart,et al.  How baculovirus polyhedra fit square pegs into round holes to robustly package viruses , 2010, The EMBO journal.

[5]  Shunji Goto,et al.  New micro‐beam beamline at SPring‐8, targeting at protein micro‐crystallography , 2010 .

[6]  C. Schulze-Briese,et al.  Automatic loop centring with a high-precision goniometer head at the SLS macromolecular crystallography beamlines , 2011, Journal of synchrotron radiation.

[7]  Henry N. Chapman,et al.  Femtosecond X-ray protein nanocrystallography , 2010 .

[8]  T. Ishikawa,et al.  Hard X-ray Diffraction-Limited Nanofocusing with Kirkpatrick-Baez Mirrors , 2005 .

[9]  Gwyndaf Evans,et al.  Outrunning free radicals in room-temperature macromolecular crystallography , 2012, Acta crystallographica. Section D, Biological crystallography.

[10]  M. Burghammer,et al.  Crystal structure of the human b 2 adrenergic G-protein-coupled receptor , 2007 .

[11]  G. Evans,et al.  Macromolecular microcrystallography , 2011 .

[12]  Colin Nave,et al.  The optimum conditions to collect X-ray data from very small samples. , 2008, Journal of synchrotron radiation.

[13]  Georg Weidenspointner,et al.  Time-resolved protein nanocrystallography using an X-ray free-electron laser , 2012, Optics express.

[14]  Robert A. Grothe,et al.  Structure of the cross-beta spine of amyloid-like fibrils. , 2005, Nature.

[15]  Stephen Corcoran,et al.  Radiation damage in protein crystals is reduced with a micron-sized X-ray beam , 2011, Proceedings of the National Academy of Sciences.

[16]  Elspeth F. Garman,et al.  Know your dose : RADDOSE , 2010 .

[17]  Christian Morawe,et al.  The ID23-2 structural biology microfocus beamline at the ESRF , 2009, Journal of synchrotron radiation.

[18]  Julia Brasch,et al.  Structures from Anomalous Diffraction of Native Biological Macromolecules , 2012, Science.

[19]  Y. Mori,et al.  Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining , 2002 .

[20]  F Cipriani,et al.  Protein microcrystals and the design of a microdiffractometer: current experience and plans at EMBL and ESRF/ID13. , 1999, Acta crystallographica. Section D, Biological crystallography.

[21]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[22]  Brian K. Kobilka,et al.  High resolution crystal structure of human B2-adrenergic G protein-coupled receptor. , 2007 .

[23]  Michael Becker,et al.  Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals. , 2011, Journal of synchrotron radiation.

[24]  Manfred Burghammer,et al.  Small is beautiful: protein micro-crystallography , 1998, Nature Structural Biology.

[25]  U Weierstall,et al.  Injector for scattering measurements on fully solvated biospecies. , 2012, The Review of scientific instruments.

[26]  Gwyndaf Evans,et al.  A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71 , 2012, Nature Structural &Molecular Biology.

[27]  F Cipriani,et al.  Automation of sample mounting for macromolecular crystallography. , 2006, Acta crystallographica. Section D, Biological crystallography.

[28]  Gwyndaf Evans,et al.  High-speed crystal detection and characterization using a fast-readout detector , 2010, Acta crystallographica. Section D, Biological crystallography.

[29]  Anton Barty,et al.  Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals. , 2011, Acta crystallographica. Section A, Foundations of crystallography.

[30]  L. Pardo,et al.  Crystal structure of the μ-opioid receptor bound to a morphinan antagonist , 2012, Nature.

[31]  T. Miyoshi,et al.  X-ray beam stabilization at BL-17A, the protein microcrystallography beamline of the Photon Factory , 2008, Journal of synchrotron radiation.

[32]  R. Fischetti,et al.  Mini-beam collimator applications at the Advanced Photon Source , 2011 .

[33]  Jesse B. Hopkins,et al.  Dark progression reveals slow timescales for radiation damage between T = 180 and 240 K. , 2011, Acta crystallographica. Section D, Biological crystallography.

[34]  C. Schulze-Briese,et al.  The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses , 2009, Proceedings of the National Academy of Sciences.

[35]  Georg Weidenspointner,et al.  Lipidic phase membrane protein serial femtosecond crystallography , 2012, Nature Methods.

[36]  L Jacquamet,et al.  Upgrade of the CATS sample changer on FIP-BM30A at the ESRF: towards a commercialized standard. , 2009, Journal of synchrotron radiation.

[37]  Gyorgy Snell,et al.  Automated sample mounting and alignment system for biological crystallography at a synchrotron source. , 2004, Structure.

[38]  M. Hunter,et al.  Toward structure determination using membrane-protein nanocrystals and microcrystals. , 2011, Methods.

[39]  E. Stern,et al.  Spatial dependence and mitigation of radiation damage by a line-focus mini-beam. , 2010, Acta Crystallographica Section D: Biological Crystallography.

[40]  M. Caffrey Crystallizing membrane proteins for structure determination: use of lipidic mesophases. , 2009, Annual review of biophysics.

[41]  R. Fischetti,et al.  PID feedback control of monochromator thermal stabilization , 2011 .

[42]  Keiko Ikeda,et al.  The molecular organization of cypovirus polyhedra , 2007, Nature.

[43]  Gebhard F. X. Schertler,et al.  Protein crystallography with a micrometre-sized synchrotron-radiation beam , 2008, Acta crystallographica. Section D, Biological crystallography.

[44]  Ehmke Pohl,et al.  Automation of the EMBL Hamburg protein crystallography beamline BW7B. , 2004, Journal of synchrotron radiation.

[45]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[46]  R. Stevens,et al.  Structure of the human k-opioid receptor in complex with JDTic , 2012 .

[47]  Manfred Burghammer,et al.  Protein crystallography microdiffraction. , 2005, Current opinion in structural biology.

[48]  D. Ratner,et al.  First lasing and operation of an ångstrom-wavelength free-electron laser , 2010 .

[49]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[50]  T. Irving,et al.  The BioCAT undulator beamline 18ID: a facility for biological non-crystalline diffraction and X-ray absorption spectroscopy at the Advanced Photon Source. , 2004, Journal of synchrotron radiation.

[51]  Aina E Cohen,et al.  An automated system to mount cryo-cooled protein crystals on a synchrotron beam line, using compact sample cassettes and a small-scale robot. , 2002, Journal of applied crystallography.

[52]  Gordon A Leonard,et al.  ID29: a high-intensity highly automated ESRF beamline for macromolecular crystallography experiments exploiting anomalous scattering. , 2012, Journal of synchrotron radiation.

[53]  Gwyndaf Evans,et al.  In situ macromolecular crystallography using microbeams , 2012, Acta crystallographica. Section D, Biological crystallography.

[54]  Matching X-ray source, optics and detectors to protein crystallography requirements. , 1999, Acta crystallographica. Section D, Biological crystallography.

[55]  Craig M. Ogata,et al.  Micro‐Crystallography Developments at GM/CA‐CAT at the APS , 2010 .

[56]  T. Ishikawa,et al.  Stable top-up operation at SPring-8. , 2006, Journal of synchrotron radiation.

[57]  David Eisenberg,et al.  Atomic View of a Toxic Amyloid Small Oligomer , 2012, Science.

[58]  Robert F. Fischetti,et al.  Simulation and optimization of a sub-micron beam for macromolecular crystallography using SHADOW and XOP at GM/CA CAT at the APS , 2011, Optical Engineering + Applications.

[59]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[60]  O. Bunk,et al.  X-ray beam-position monitoring in the sub-micrometre and sub-second regime. , 2005, Journal of synchrotron radiation.

[61]  Shenglan Xu,et al.  Mini-beam collimator enables microcrystallography experiments on standard beamlines. , 2009, Journal of synchrotron radiation.

[62]  Stephen Corcoran,et al.  A 7 µm mini-beam improves diffraction data from small or imperfect crystals of macromolecules , 2008, Acta crystallographica. Section D, Biological crystallography.

[63]  L. Johnson,et al.  Macromolecular crystallography at synchrotron radiation sources: current status and future developments , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[64]  Jean Susini,et al.  High-resolution angular beam stability monitoring at a nanofocusing beamline. , 2008, Journal of synchrotron radiation.

[65]  M. Borland,et al.  Progress towards top-up mode operations at the Advanced Photon Source , 1999 .

[66]  R E Gillilan,et al.  Microcrystallography using single-bounce monocapillary optics. , 2010, Journal of synchrotron radiation.

[67]  Gwyndaf Evans,et al.  Diamond Beamline 124: A Flexible Instrument for Macromolecular Micro‐crystallography , 2007 .

[68]  Takashi Kumasaka,et al.  Upgrade of automated sample exchanger SPACE , 2012 .

[69]  R. Stevens,et al.  Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 µm size X-ray synchrotron beam , 2009, Journal of The Royal Society Interface.

[70]  Sebastien Petitdemange,et al.  Diffraction cartography: applying microbeams to macromolecular crystallography sample evaluation and data collection. , 2010, Acta crystallographica. Section D, Biological crystallography.

[71]  T. Tomizaki,et al.  SLS Crystallization Platform at Beamline X06DA—A Fully Automated Pipeline Enabling in Situ X-ray Diffraction Screening , 2011 .

[72]  Keith Moffat,et al.  Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges. , 2012, Current opinion in structural biology.

[73]  T. Ishikawa,et al.  Improvement in Stability of SPring‐8 Standard X‐Ray Monochromators with Water‐Cooled Crystals , 2010 .