Microarray Studies in Bacillus subtilis

This review focuses on the construction of a global, comprehensive understanding of Bacillus subtilis through microarray studies. The microarray studies in B. subtilis were analysed based on the theme of the work, by mentioning the growth media, bioreactor operation conditions, RNA isolation method, number of data points analysed in exponential or stationary phases, compared genotypes, induction and repression ratios, investigated gene(s) and their positive and/or negative influences. Based on the theme and scope of the studies, the articles were reviewed under seven thematic sections, i.e., effects of gene deletion(s) or overexpression, effects of overexression of heterologous genes, comparison of global gene expression between aerobic and anaerobic respiration, effects of temperature change, effects of transported molecules, effects of limitations and stress conditions, and other microarray studies in B. subtilis.

[1]  G. Homuth,et al.  Overflow of a hyper‐produced secretory protein from the Bacillus Sec pathway into the Tat pathway for protein secretion as revealed by proteogenomics , 2009, Proteomics.

[2]  M. Marahiel,et al.  Copper Acquisition Is Mediated by YcnJ and Regulated by YcnK and CsoR in Bacillus subtilis , 2009, Journal of bacteriology.

[3]  Elodie Foulquier,et al.  Characterization of YvcJ, a Conserved P-Loop-Containing Protein, and Its Implication in Competence in Bacillus subtilis , 2008, Journal of bacteriology.

[4]  R. Kort,et al.  Transcriptional activity around bacterial cell death reveals molecular biomarkers for cell viability , 2008, BMC Genomics.

[5]  C. Birky,et al.  Transcriptome Divergence and the Loss of Plasticity in Bacillus subtilis after 6,000 Generations of Evolution under Relaxed Selection for Sporulation , 2008, Journal of bacteriology.

[6]  J. Helmann,et al.  Phenotypic and Transcriptomic Characterization of Bacillus subtilis Mutants with Grossly Altered Membrane Composition , 2008, Journal of bacteriology.

[7]  J. Helmann,et al.  A previously unidentified σ factor and two accessory proteins regulate oxalate decarboxylase expression in Bacillus subtilis , 2008, Molecular microbiology.

[8]  M. Hecker,et al.  The role of thioredoxin TrxA in Bacillus subtilis: A proteomics and transcriptomics approach , 2008, Proteomics.

[9]  Oleg A Igoshin,et al.  Transient heterogeneity in extracellular protease production by Bacillus subtilis , 2008, Molecular systems biology.

[10]  S. Kanaya,et al.  Enhanced Recombinant Protein Productivity by Genome Reduction in Bacillus subtilis , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[11]  M. Hecker,et al.  Regulation of quinone detoxification by the thiol stress sensing DUF24/MarR‐like repressor, YodB in Bacillus subtilis , 2008, Molecular microbiology.

[12]  J. Helmann,et al.  The Bacillus subtilis σM regulon and its contribution to cell envelope stress responses , 2008, Molecular microbiology.

[13]  A. Zakrzewska,et al.  Transcriptome Analysis of Sorbic Acid-Stressed Bacillus subtilis Reveals a Nutrient Limitation Response and Indicates Plasma Membrane Remodeling , 2007, Journal of bacteriology.

[14]  Kazuo Kobayashi Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis , 2007, Molecular microbiology.

[15]  Philip Ball,et al.  Synthetic biology: Designs for life , 2007, Nature.

[16]  K. Kurokawa,et al.  The entire organization of transcription units on the Bacillus subtilis genome , 2007, BMC Genomics.

[17]  Andrzej T. Lulko,et al.  Production and Secretion Stress Caused by Overexpression of Heterologous α-Amylase Leads to Inhibition of Sporulation and a Prolonged Motile Phase in Bacillus subtilis , 2007, Applied and Environmental Microbiology.

[18]  Y. Fujita,et al.  Dual Regulation of the Bacillus subtilis Regulon Comprising the lmrAB and yxaGH Operons and yxaF Gene by Two Transcriptional Repressors, LmrA and YxaF, in Response to Flavonoids , 2007, Journal of bacteriology.

[19]  K. Murata,et al.  Plant Cell Wall Degradation by Saprophytic Bacillus subtilis Strains: Gene Clusters Responsible for Rhamnogalacturonan Depolymerization , 2007, Applied and Environmental Microbiology.

[20]  A. Grossman,et al.  SOS Induction in a Subpopulation of Structural Maintenance of Chromosome (Smc) Mutant Cells in Bacillus subtilis , 2007, Journal of bacteriology.

[21]  Y. Fujita,et al.  Bacillus subtilis rapD, a direct target of transcription repression by RghR, negatively regulates srfA expression. , 2007, FEMS microbiology letters.

[22]  Yasutaro Fujita,et al.  Organization and Function of the YsiA Regulon of Bacillus subtilis Involved in Fatty Acid Degradation* , 2007, Journal of Biological Chemistry.

[23]  Han Rauwerda,et al.  Analysis of Temporal Gene Expression during Bacillus subtilis Spore Germination and Outgrowth , 2007, Journal of bacteriology.

[24]  C. von Wachenfeldt,et al.  Mechanisms of Adaptation to Nitrosative Stress in Bacillus subtilis , 2007, Journal of bacteriology.

[25]  Jeffrey C Way,et al.  Designing biological systems. , 2007, Genes & development.

[26]  George M Church,et al.  Synthetic biology projects in vitro. , 2006, Genome research.

[27]  Andrzej T. Lulko,et al.  Transcriptome Analysis of Temporal Regulation of Carbon Metabolism by CcpA in Bacillus subtilis Reveals Additional Target Genes , 2006, Journal of Molecular Microbiology and Biotechnology.

[28]  N. Brunner,et al.  Discovering Antibiotic Efficacy Biomarkers , 2006, Molecular & Cellular Proteomics.

[29]  R. Losick,et al.  Bacillus subtilis Genome Diversity , 2006, Journal of bacteriology.

[30]  D. Bechhofer,et al.  Adaptive Gene Expression in Bacillus subtilis Strains Deleted for tetL , 2006, Journal of bacteriology.

[31]  M. Marahiel,et al.  Iron Starvation Triggers the Stringent Response and Induces Amino Acid Biosynthesis for Bacillibactin Production in Bacillus subtilis , 2006, Journal of bacteriology.

[32]  A. Sonenshein,et al.  Bacillus subtilis Aconitase Is Required for Efficient Late-Sporulation Gene Expression , 2006, Journal of bacteriology.

[33]  A. Sonenshein,et al.  Expression of Yeast Mitochondrial Aconitase in Bacillus subtilis , 2006, Journal of bacteriology.

[34]  Soon-Yong Choi,et al.  The Global Regulator Spx Functions in the Control of Organosulfur Metabolism in Bacillus subtilis , 2006, Journal of bacteriology.

[35]  M. Hecker,et al.  Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. , 2006, Environmental microbiology.

[36]  A. Grossman,et al.  Modulation of the ComA-Dependent Quorum Response in Bacillus subtilis by Multiple Rap Proteins and Phr Peptides , 2006, Journal of bacteriology.

[37]  R. Berka,et al.  Use of transcriptional profiling & bioinformatics to solve production problems: Eliminating red pigment production in a Bacillus subtilis strain producing hyaluronic acid , 2006 .

[38]  N. Ogasawara,et al.  Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon , 2006, Molecular microbiology.

[39]  Jessica M. Silvaggi,et al.  Genes for Small, Noncoding RNAs under Sporulation Control in Bacillus subtilis , 2006, Journal of bacteriology.

[40]  R. Losick,et al.  Cell population heterogeneity during growth of Bacillus subtilis. , 2005, Genes & development.

[41]  A. Henriques,et al.  Isolation and Characterization of New Thiamine-Deregulated Mutants of Bacillus subtilis , 2005, Journal of bacteriology.

[42]  A. Wipat,et al.  Genome-Wide Transcriptional Analysis of the Phosphate Starvation Stimulon of Bacillus subtilis , 2005, Journal of bacteriology.

[43]  C. Schilling,et al.  Catabolite Repression and Activation in Bacillus subtilis: Dependency on CcpA, HPr, and HprK , 2005, Journal of bacteriology.

[44]  Eli S. Groban,et al.  Genetic Composition of the Bacillus subtilis SOS System , 2005, Journal of bacteriology.

[45]  D. de Mendoza,et al.  Bacillus subtilis Cysteine Synthetase Is a Global Regulator of the Expression of Genes Involved in Sulfur Assimilation , 2005, Journal of bacteriology.

[46]  M. Hecker,et al.  Application of an electric DNA-chip for the expression analysis of bioprocess-relevant marker genes of Bacillus subtilis. , 2005, Biotechnology and bioengineering.

[47]  N. Ogasawara,et al.  The H2O2 Stress-Responsive Regulator PerR Positively Regulates srfA Expression in Bacillus subtilis , 2005, Journal of bacteriology.

[48]  C. von Wachenfeldt,et al.  Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis. , 2005, Microbiology.

[49]  Jessica M. Silvaggi,et al.  Small Untranslated RNA Antitoxin in Bacillus subtilis , 2005, Journal of bacteriology.

[50]  A. Grossman,et al.  Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  A. Grossman,et al.  Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum‐sensing transcription factor ComA in Bacillus subtilis , 2005, Molecular microbiology.

[52]  J. Helmann,et al.  Genetic and physiological responses of Bacillus subtilis to metal ion stress , 2005, Molecular microbiology.

[53]  J. Dubois,et al.  Tricksy Business: Transcriptome Analysis Reveals the Involvement of Thioredoxin A in Redox Homeostasis, Oxidative Stress, Sulfur Metabolism, and Cellular Differentiation in Bacillus subtilis , 2005, Journal of bacteriology.

[54]  Janine T. Lin,et al.  Global Transcriptional Response of Bacillus subtilis to Treatment with Subinhibitory Concentrations of Antibiotics That Inhibit Protein Synthesis , 2005, Antimicrobial Agents and Chemotherapy.

[55]  G. Sherlock Of fish and chips , 2005, Nature Methods.

[56]  U. Völker,et al.  Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. , 2005, Microbiology.

[57]  N. Brunner,et al.  Discovering the Mechanism of Action of Novel Antibacterial Agents through Transcriptional Profiling of Conditional Mutants , 2005, Antimicrobial Agents and Chemotherapy.

[58]  Dorothea K. Thompson,et al.  Microbial Functional Genomics: Zhou/Microbial Functional Genomics , 2005 .

[59]  J. Sekiguchi,et al.  Functional Analysis of the YvrGHb Two-Component System of Bacillus subtilis: Identification of the Regulated Genes by DNA Microarray and Northern Blot Analyses , 2005, Bioscience, biotechnology, and biochemistry.

[60]  Thomas Hermann,et al.  Using functional genomics to improve productivity in the manufacture of industrial biochemicals. , 2004, Current opinion in biotechnology.

[61]  Kunio Yamane,et al.  Bacillus subtilis LmrA Is a Repressor of the lmrAB and yxaGH Operons: Identification of Its Binding Site and Functional Analysis of lmrB and yxaGH , 2004, Journal of bacteriology.

[62]  S. Brul,et al.  The effect of metal ions commonly present in food on gene expression of sporulating Bacillus subtilis cells in relation to spore wet heat resistance. , 2004 .

[63]  S. Kjelleberg,et al.  Differential Gene Expression To Investigate the Effect of (5Z)-4-Bromo- 5-(Bromomethylene)-3-Butyl-2(5H)-Furanone on Bacillus subtilis , 2004, Applied and Environmental Microbiology.

[64]  Michiko M. Nakano,et al.  Response of Bacillus subtilis to Nitric Oxide and the Nitrosating Agent Sodium Nitroprusside , 2004, Journal of bacteriology.

[65]  T. Wood,et al.  Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yver for biofilm maintenance , 2004, Biotechnology and bioengineering.

[66]  A. Grossman,et al.  Identification of AbrB‐regulated genes involved in biofilm formation by Bacillus subtilis , 2004, Molecular microbiology.

[67]  Y. Fujita,et al.  Systematic analysis of SigD-regulated genes in Bacillus subtilis by DNA microarray and Northern blotting analyses. , 2004, Gene.

[68]  Jizhong Zhou Microbial Functional Genomics , 2004 .

[69]  Gintaras Deikus,et al.  Recycling of a regulatory protein by degradation of the RNA to which it binds. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Hecker,et al.  Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. , 2004, Microbiology.

[71]  Christoph Freiberg,et al.  Identification of antibiotic stress-inducible promoters: a systematic approach to novel pathway-specific reporter assays for antibacterial drug discovery. , 2003, Genome research.

[72]  Tao Wang,et al.  Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon , 2003, Molecular microbiology.

[73]  Nicola Zamboni,et al.  Genome engineering reveals large dispensable regions in Bacillus subtilis. , 2003, Molecular biology and evolution.

[74]  Hirotake Yamaguchi,et al.  Organization and expression of the Bacillus subtilis sigY operon. , 2003, Journal of biochemistry.

[75]  Shane T. Jensen,et al.  The Spo0A regulon of Bacillus subtilis , 2003, Molecular microbiology.

[76]  Peter Zuber,et al.  Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[77]  U. Völker,et al.  Genome-Wide Transcriptional Profiling Analysis of Adaptation of Bacillus subtilis to High Salinity , 2003, Journal of bacteriology.

[78]  J. Errington,et al.  Identification of sporulation genes by genome-wide analysis of the sigmaE regulon of Bacillus subtilis. , 2003, Microbiology.

[79]  K. K. Andersen,et al.  Genes controlled by the essential YycG/YycF two‐component system of Bacillus subtilis revealed through a novel hybrid regulator approach , 2003, Molecular microbiology.

[80]  J. Helmann,et al.  The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and σB regulons , 2003, Molecular microbiology.

[81]  S. Aymerich,et al.  The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate. , 2003, Microbiology.

[82]  K. Bunai,et al.  Mannitol-1-Phosphate Dehydrogenase (MtlD) Is Required for Mannitol and Glucitol Assimilation in Bacillus subtilis: Possible Cooperation of mtl and gut Operons , 2003, Journal of bacteriology.

[83]  G. Hambraeus,et al.  Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs , 2003, Molecular Genetics and Genomics.

[84]  Y. Fujita,et al.  Identification of additional TnrA‐regulated genes of Bacillus subtilis associated with a TnrA box , 2003, Molecular microbiology.

[85]  C. Yanofsky,et al.  Genomewide transcriptional changes associated with genetic alterations and nutritional supplementation affecting tryptophan metabolism in Bacillus subtilis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Jörg Stülke,et al.  Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. , 2003, Metabolic engineering.

[87]  R. Losick,et al.  Additional Targets of the Bacillus subtilis Global Regulator CodY Identified by Chromatin Immunoprecipitation and Genome-Wide Transcript Analysis , 2003, Journal of bacteriology.

[88]  K. Asai,et al.  DNA microarray analysis of Bacillus subtilis sigma factors of extracytoplasmic function family. , 2003, FEMS microbiology letters.

[89]  Fujio Kawamura,et al.  Expression Profiling of Translation-associated Genes in Sporulating Bacillus subtilis and Consequence of Sporulation by Gene Inactivation , 2003, Bioscience, biotechnology, and biochemistry.

[90]  P. Fawcett,et al.  The Global Transcriptional Response of Bacillus subtilis to Peroxide Stress Is Coordinated by Three Transcription Factors , 2003, Journal of bacteriology.

[91]  O. Kuipers,et al.  Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. , 2002, Nucleic acids research.

[92]  Tao Wang,et al.  Functional Analysis of the Bacillus subtilis Zur Regulon , 2002, Journal of bacteriology.

[93]  M. Hecker,et al.  Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics , 2002, Molecular Genetics and Genomics.

[94]  M. Marahiel,et al.  Genomewide Transcriptional Analysis of the Cold Shock Response in Bacillus subtilis , 2002, Journal of bacteriology.

[95]  G. Homuth,et al.  Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. , 2002, Microbiology.

[96]  A. Danchin,et al.  Global Expression Profile of Bacillus subtilis Grown in the Presence of Sulfate or Methionine , 2002, Journal of bacteriology.

[97]  J. Helmann,et al.  Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilisσW and σM regulons , 2002 .

[98]  Tao Wang,et al.  Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon , 2002, Molecular microbiology.

[99]  Patrick Eichenberger,et al.  Genome-Wide Analysis of the Stationary-Phase Sigma Factor (Sigma-H) Regulon of Bacillus subtilis , 2002, Journal of bacteriology.

[100]  M. Ogura,et al.  Recent progress in Bacillus subtilis two-component regulation. , 2002, Frontiers in bioscience : a journal and virtual library.

[101]  Michael Hecker,et al.  Transcriptome and Proteome Analysis of Bacillus subtilis Gene Expression Modulated by Amino Acid Availability , 2002, Journal of bacteriology.

[102]  M. Hecker,et al.  Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis , 2002, Journal of bacteriology.

[103]  Naotake Ogasawara,et al.  Whole-Genome Analysis of Genes Regulated by the Bacillus subtilis Competence Transcription Factor ComK , 2002, Journal of bacteriology.

[104]  Mark Albano,et al.  Microarray analysis of the Bacillus subtilis K‐state: genome‐wide expression changes dependent on ComK , 2002, Molecular microbiology.

[105]  Min Cao,et al.  Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. , 2002, Journal of molecular biology.

[106]  F. Gamo,et al.  Global Transcriptional Response of Bacillus subtilis to Heat Shock , 2001, Journal of bacteriology.

[107]  Naotake Ogasawara,et al.  Comprehensive DNA Microarray Analysis ofBacillus subtilis Two-Component Regulatory Systems , 2001, Journal of bacteriology.

[108]  S. Saha,et al.  RNA Expression Analysis Using an AntisenseBacillus subtilis Genome Array , 2001, Journal of bacteriology.

[109]  E. Ferrari,et al.  Correlation between Bacillus subtilis scoC Phenotype and Gene Expression Determined Using Microarrays for Transcriptome Analysis , 2001, Journal of Bacteriology.

[110]  J. Hoheisel,et al.  Global Analysis of the General Stress Response ofBacillus subtilis , 2001, Journal of bacteriology.

[111]  T. Tanaka,et al.  DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B.subtilis two-component regulatory systems. , 2001, Nucleic acids research.

[112]  Jean-Jacques Daudin,et al.  Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis , 2001, Genome Biology.

[113]  W. Weyler,et al.  Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole‐genome analyses , 2001, Molecular microbiology.

[114]  K. Kobayashi,et al.  Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. , 2001, Nucleic acids research.

[115]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[116]  R. Ye,et al.  Global Gene Expression Profiles of Bacillus subtilis Grown under Anaerobic Conditions , 2000, Journal of bacteriology.

[117]  R. Losick,et al.  The transcriptional profile of early to middle sporulation in Bacillus subtilis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[118]  K. Devine,et al.  Expression of ykdA, Encoding a Bacillus subtilis Homologue of HtrA, Is Heat Shock Inducible and Negatively Autoregulated , 2000, Journal of bacteriology.

[119]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[120]  D. Dubnau,et al.  Inactivation of mecA prevents recovery from the competent state and interferes with cell division and the partitioning of nucleoids in Bacillus subtilis , 1995, Molecular microbiology.

[121]  D. Sinderen,et al.  comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis , 1994, Journal of bacteriology.

[122]  S. Engelmann,et al.  Analysis of the induction of general stress proteins of Bacillus subtilis. , 1994, Microbiology.

[123]  W. D. de Vos,et al.  Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. , 1993, European journal of biochemistry.

[124]  A. Grossman,et al.  Sequence and properties of mecA, a negative regulator of genetic competence in Bacillus subtilis , 1993, Molecular microbiology.

[125]  G. Rapoport,et al.  The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. , 1992, The Journal of biological chemistry.

[126]  J. Wyche,et al.  Simultaneous and rapid isolation of bacterial and eukaryotic DNA and RNA: a new approach for isolating DNA. , 1991, BioTechniques.

[127]  D. Dubnau,et al.  Growth medium-independent genetic competence mutants of Bacillus subtilis , 1990, Journal of bacteriology.

[128]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[129]  R. Losick,et al.  Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. , 1986, Journal of molecular biology.

[130]  A. Billault,et al.  Pleiotropic mutations affecting sporulation conditions and the syntheses of extracellular enzymes in Bacillus subtilis 168. , 1975, Biochimie.

[131]  A. Boudabous,et al.  Transcriptional responses of Bacillus subtillis and thuringiensis to antibiotics and anti-tumour drugs. , 2009, International journal of molecular medicine.

[132]  P. Çalık,et al.  Expression system for recombinant human growth hormone production from Bacillus subtilis , 2009, Biotechnology progress.

[133]  J. Warrington,et al.  The affymetrix GeneChip platform: an overview. , 2006, Methods in enzymology.

[134]  K. Bunai,et al.  Profiling and comprehensive expression analysis of ABC transporter solute‐binding proteins of Bacillus subtilis membrane based on a proteomic approach , 2004, Electrophoresis.

[135]  Hanne Jarmer,et al.  Transcriptome analysis documents induced competence of Bacillus subtilis during nitrogen limiting conditions. , 2002, FEMS microbiology letters.

[136]  P. Çalık,et al.  BIOPROCESS DEVELOPMENT FOR SERINE ALKALINE PROTEASE PRODUCTION: A REVIEW , 2001 .

[137]  Antoine de Saizieu,et al.  Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays , 1998, Nature Biotechnology.

[138]  M. Surette,et al.  Two-component signal transduction systems : structure-function relationships and mechanisms of catalysis , 1995 .