Memory-type control charts in statistical process control

Control chart is the most important statistical tool to manage the business processes. It is a graph of measurements on a quality characteristic of the process on the vertical axis plotted against time on the horizontal axis. The graph is completed with control limits that cause variation mark. Once a measurement is outside the control limits, the process is declared out-of-control. Control Charts are widely used in the IC industry, for example in the monitoring of the thickness of silicon slices after a grinding process. Nasir Abbas examines two main control charts using all measurements and shows how they can be improved by additional signaling rules. He also has combined two control structures into a single chart that is gives faster detection ability than the individual structures, when the process is out-of-control. Abbas also developed a new control chart based on the moving average and studied the statistical properties in his thesis.

[1]  J. Westgard,et al.  Combined Shewhart-cusum control chart for improved quality control in clinical chemistry. , 1977, Clinical chemistry.

[2]  Giovanni Celano,et al.  A Johnson's type transformation EWMA-S² control chart , 2010 .

[3]  Muhammad Riaz,et al.  Enhancing the performance of EWMA charts , 2011, Qual. Reliab. Eng. Int..

[4]  Wei Jiang,et al.  Adaptive CUSUM procedures with EWMA-based shift estimators , 2008 .

[5]  Andrew C. Palm,et al.  Tables of Run Length Percentiles for Determining the Sensitivity of Shewhart Control Charts for Averages with Supplementary Runs Rules , 1990 .

[6]  Morton Klein,et al.  Two Alternatives to the Shewhart X̄ Control Chart , 2000 .

[7]  CESAR A. Acosta-Mejia,et al.  A comparison of control charting procedures for monitoring process dispersion , 1999 .

[8]  W. Fuller Regression Estimation for Survey Samples , 2002 .

[9]  Galit Shmueli,et al.  Run-Length Distribution for Control Charts with Runs and Scans Rules , 2003 .

[10]  Shing I. Chang,et al.  Multivariate EWMA control charts using individual observations for process mean and variance monitoring and diagnosis , 2008 .

[11]  Longcheen Huwang,et al.  New EWMA control charts for monitoring process dispersion , 2010, Comput. Stat. Data Anal..

[12]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[13]  S. Steiner EWMA Control Charts with Time-Varying Control Limits and Fast Initial Response , 1999 .

[14]  K. E. Case,et al.  Development and Evaluation of Control Charts Using Exponentially Weighted Moving Averages , 1989 .

[15]  M. Rueda Garcia,et al.  Repeated substitution method: The ratio estimator for the population variance , 1996 .

[16]  Muhammad Riaz,et al.  CS‐EWMA Chart for Monitoring Process Dispersion , 2013, Qual. Reliab. Eng. Int..

[17]  S. W. Roberts,et al.  Control Chart Tests Based on Geometric Moving Averages , 2000, Technometrics.

[18]  James M. Lucas,et al.  Fast Initial Response for CUSUM Quality-Control Schemes: Give Your CUSUM A Head Start , 2000, Technometrics.

[19]  Michael B. C. Khoo,et al.  Design of Runs Rules Schemes , 2003 .

[20]  Giovanna Capizzi,et al.  An Adaptive Exponentially Weighted Moving Average Control Chart , 2003, Technometrics.

[21]  William H. Woodall,et al.  A review and analysis of cause-selecting control charts , 1993 .

[22]  Cem Kadilar,et al.  A new estimator using two auxiliary variables , 2005, Appl. Math. Comput..

[23]  Giovanni Celano,et al.  A new CUSUM‐S2 control chart for monitoring the process variance , 2009 .

[24]  Petros E. Maravelakis,et al.  Statistical Process Control using Shewhart Control Charts with Supplementary Runs Rules , 2007 .

[25]  A Frutiger,et al.  Improving time-sensitive processes in the intensive care unit: the example of 'door-to-needle time' in acute myocardial infarction. , 2000, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[26]  Muhammad Riaz,et al.  An EWMA-Type Control Chart for Monitoring the Process Mean Using Auxiliary Information , 2014 .

[27]  Stephen V. Crowder,et al.  An EWMA for Monitoring a Process Standard Deviation , 1992 .

[28]  Yu Tian,et al.  Weighted-loss-function CUSUM chart for monitoring mean and variance of a production process , 2005 .

[29]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[30]  Wei Jiang,et al.  A New EWMA Chart for Monitoring Process Dispersion , 2008 .

[31]  Muhammad Riaz,et al.  Improving the performance of CUSUM charts , 2011, Qual. Reliab. Eng. Int..

[32]  Muhammad Riaz,et al.  Progressive Mean Control Chart for Monitoring Process Location Parameter , 2013, Qual. Reliab. Eng. Int..

[33]  D. Hawkins A Cusum for a Scale Parameter , 1981 .

[34]  E. S. Page Controlling the Standard Deviation by Cusums and Warning Lines , 1963 .

[35]  Fah Fatt Gan,et al.  A CUMULATIVE SUM CONTROL CHART FOR MONITORING PROCESS VARIANCE , 1995 .

[36]  Karl-Heinz Waldmann,et al.  Design of double CUSUM quality control schemes , 1996 .

[37]  G. McIntyre,et al.  A method for unbiased selective sampling, using ranked sets , 1952 .

[38]  Snigdhansu Chatterjee,et al.  Distribution-free cumulative sum control charts using bootstrap-based control limits , 2009, 0906.1421.

[39]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .

[40]  B. J. Mandel The Regression Control Chart , 1969 .

[41]  James M. Lucas,et al.  Combined Shewhart-CUSUM Quality Control Schemes , 1982 .

[42]  Muhammad Riaz,et al.  A process variability control chart , 2009, Comput. Stat..

[43]  Emmanuel Yashchin,et al.  Weighted Cumulative Sum Technique , 1989 .

[44]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[45]  Muhammad Riaz,et al.  Monitoring process mean level using auxiliary information , 2008 .

[46]  K. W. Kemp,et al.  Sampling inspection of continuous processes with no autocorrelation between successive results , 1960 .

[47]  Philippe Castagliola,et al.  A New S2‐EWMA Control Chart for Monitoring the Process Variance , 2005 .

[48]  Muhammad Riaz,et al.  Mixed Exponentially Weighted Moving Average–Cumulative Sum Charts for Process Monitoring , 2013, Qual. Reliab. Eng. Int..

[49]  Muhammad Riaz,et al.  Monitoring process variability using auxiliary information , 2008, Comput. Stat..

[50]  Matoteng M. Ncube,et al.  A Comparison of dispersion quality control charts , 1987 .

[51]  Athanasios C. Rakitzis,et al.  The Modified r Out of m Control Chart , 2008, Commun. Stat. Simul. Comput..