New determination of the production cross section for γ rays in the Galaxy

The flux of $\gamma$ rays is measured with unprecedented accuracy by the $\textit{Fermi}$ Large Area Telescope from 100 MeV to almost 1 TeV. In the future, the Cherenkov Telescope Array will have the capability to measure photons up to 100 TeV. To accurately interpret this data, precise predictions of the production processes, specifically the cross section for the production of photons from the interaction of cosmic-ray protons and helium with atoms of the ISM, are necessary. In this study, we determine new analytical functions describing the Lorentz-invariant cross section for $\gamma$-ray production in hadronic collisions. We utilize the limited total cross section data for $\pi^0$ production channels and supplement this information by drawing on our previous analyses of charged pion production to infer missing details. In this context, we highlight the need for new data on $\pi^0$ production. Our predictions include the cross sections for all production channels that contribute down to the 0.5% level of the final cross section, namely $\eta$, $K^+$, $K^-$, $K^0_S$, and $K^0_L$ mesons as well as $\Lambda$, $\Sigma$, and $\Xi$ baryons. We determine the total differential cross section $d\sigma(p+p\rightarrow \gamma+X)/dE_{\gamma}$ from 10 MeV to 100 TeV with an uncertainty of 10% below 10 GeV of $\gamma$-ray energies, increasing to 20% at the TeV energies. We provide numerical tables and a script for the community to access our energy-differential cross sections, which are provided for incident proton (nuclei) energies from 0.1 to $10^7$ GeV (GeV/n).

[1]  A. Moiseev,et al.  Incremental Fermi Large Area Telescope Fourth Source Catalog , 2022, The Astrophysical Journal Supplement Series.

[2]  M. Krumholz,et al.  The diffuse γ-ray background is dominated by star-forming galaxies , 2021, Nature.

[3]  D. Grasso,et al.  Simulating the Galactic multi-messenger emissions with HERMES , 2021, 2105.13165.

[4]  Danzengluobu,et al.  Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources , 2021, Nature.

[5]  Cnrs,et al.  Gamma rays as probes of cosmic-ray propagation and interactions in galaxies , 2021, 2103.16423.

[6]  P. Mertsch,et al.  Bayesian inference of three-dimensional gas maps. I. Galactic CO , 2020, Astronomy & Astrophysics.

[7]  R. Sagdeev,et al.  The Alpha Magnetic Spectrometer (AMS) on the international space station: Part II — Results from the first seven years , 2020 .

[8]  William H. Lee,et al.  3HWC: The Third HAWC Catalog of Very-high-energy Gamma-Ray Sources , 2020, The Astrophysical Journal.

[9]  M. Pohl,et al.  Production of secondary particles in heavy nuclei interactions in supernova remnants , 2020, 2006.07018.

[10]  K. Blundell,et al.  Particle acceleration in astrophysical jets , 2020, New astronomy reviews (Print).

[11]  M. Kachelrieß,et al.  Alternative coalescence model for deuteron, tritium, helium-3 and their antinuclei , 2019, The European Physical Journal A.

[12]  F. Schinzel,et al.  Fermi Large Area Telescope Fourth Source Catalog , 2019, The Astrophysical Journal Supplement Series.

[13]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[14]  Mathieu De Naurois,et al.  The H.E.S.S. experiment : current status and future prospects , 2019, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[15]  D. Costantin,et al.  A Decade of Gamma-Ray Bursts Observed by Fermi-LAT: The Second GRB Catalog , 2019, The Astrophysical Journal.

[16]  M. Kachelrieß,et al.  AAfrag: Interpolation routines for Monte Carlo results on secondary production in proton–proton, proton–nucleus and nucleus–nucleus interactions , 2019, Comput. Phys. Commun..

[17]  C. Weniger,et al.  On the progressive hardening of the cosmic-ray proton spectrum in the inner Galaxy , 2018, Journal of Cosmology and Astroparticle Physics.

[18]  G. Jóhannesson,et al.  The Three-dimensional Spatial Distribution of Interstellar Gas in the Milky Way: Implications for Cosmic Rays and High-energy Gamma-ray Emissions , 2018, The Astrophysical journal.

[19]  D. M. Goméz Coral,et al.  pi(0) and eta meson production in proton-proton collisions at root s=8 TeV , 2018 .

[20]  G. Jóhannesson,et al.  High-energy Gamma Rays from the Milky Way: Three-dimensional Spatial Models for the Cosmic-Ray and Radiation Field Densities in the Interstellar Medium , 2017, The Astrophysical journal.

[21]  J. G. Contreras,et al.  Production of $${\pi ^0}$$π0 and $$\eta $$η mesons up to high transverse momentum in pp collisions at 2.76 TeV , 2017, The European physical journal. C, Particles and fields.

[22]  The Fermi-LAT Collaboration The Fermi Galactic Center GeV Excess and Implications for Dark Matter , 2017, 1704.03910.

[23]  Y. Nagai,et al.  Measurements of $$\pi ^\pm $$π±, K$$^\pm $$±, p and $${\bar{\text {p}}}$$p¯ spectra in proton-proton interactions at 20, 31, 40, 80 and 158 $$\text{ GeV }/c$$GeV/c with the NA61/SHINE spectrometer at the CERN SPS , 2017, 1705.02467.

[24]  A. Strong,et al.  Diffuse Gamma Rays in 3D Galactic Cosmic-ray Propagation Models , 2017, 1701.07285.

[25]  D. Thompson,et al.  DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA , 2016, 1602.07246.

[26]  F. Cerutti,et al.  Production of secondary particles and nuclei in cosmic rays collisions with the interstellar gas using the FLUKA code , 2015, 1510.04623.

[27]  P. Munar-Adrover,et al.  The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula , 2014, 1409.5594.

[28]  M. Fornasa,et al.  The nature of the Diffuse Gamma-Ray Background , 2015, 1502.02866.

[29]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[30]  I. Tamborra,et al.  Star-forming galaxies as the origin of diffuse high-energy backgrounds: gamma-ray and neutrino connections, and implications for starburst history , 2014, 1404.1189.

[31]  William H. Lee,et al.  Introducing the CTA concept , 2013 .

[32]  D. Hooper,et al.  Dark matter annihilation in the Galactic Center as seen by the Fermi Gamma Ray Space Telescope , 2010, 1010.2752.

[33]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[34]  N. Bissantz,et al.  Three-Dimensional Distribution of Molecular Gas in the Barred Milky Way , 2007, 0712.4264.

[35]  T. Koi,et al.  Erratum: “Parameterization of γ, e±, and Neutrino Spectra Produced by p-p Interaction in Astronomical Environment” (ApJ, 647, 692 [2006]) , 2007 .

[36]  T. Koi,et al.  Parameterization of γ, epm, and Neutrino Spectra Produced by p-p Interaction in Astronomical Environments , 2006, astro-ph/0605581.

[37]  V. Cerný,et al.  Inclusive production of charged pions in p + C collisions at 158 GeV/c beam momentum , 2005, hep-ex/0606028.

[38]  N. Bissantz,et al.  Monthly Notices of the Royal Astronomical Society , 2003 .

[39]  A. Strong,et al.  Erratum: "Diffuse Continuum Gamma Rays from the Galaxy" (ApJ, 537, 763 [2000]) , 2000 .

[40]  A. Strong,et al.  Diffuse Continuum Gamma Rays from the Galaxy , 1998, astro-ph/9811296.

[41]  A. Strong,et al.  Production and Propagation of Cosmic-Ray Positrons and Electrons , 1997, astro-ph/9710124.

[42]  C. Dermer Binary collision rates of relativistic thermal plasmas. II: Spectra , 1986 .

[43]  F. Stecker Neutral-pion-decay gamma rays from the galaxy and the interstellar gas content , 1973 .