On non-linear flows with slip boundary condition

Abstract.The assumption that a fluid adheres to a solid boundary (‘no-slip’ boundary condition) is one of the central tenets of the Navier-Stokes theory. However, there are situations wherein this assumption does not hold. In this communication we examine the effects of slip at the wall when an Oldroyd 6-constant fluid is considered in a channel. The slip assumed depends on the shear stress at the wall. The three non-linear problems are solved using homotopy analysis method (HAM). The results for the velocity profiles are presented and discussed.

[1]  S. Liao On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet , 2003, Journal of Fluid Mechanics.

[2]  Tasawar Hayat,et al.  Exact flow of a third grade fluid past a porous plate using homotopy analysis method , 2003 .

[3]  Douglass S. Kalika,et al.  Wall Slip and Extrudate Distortion in Linear Low‐Density Polyethylene , 1987 .

[4]  T. Hayat,et al.  On the explicit analytic solutions of an Oldroyd 6-constant fluid , 2004 .

[5]  Jan Awrejcewicz,et al.  Asymptotic approaches in nonlinear dynamics , 1996 .

[6]  J. Dooley,et al.  Boundary conditions for contract lines in coextrusion flows , 1993 .

[7]  M. Denn ISSUES IN VISCOELASTIC FLUID MECHANICS , 1990 .

[8]  K. Cheung,et al.  Homotopy analysis of nonlinear progressive waves in deep water , 2003 .

[9]  Shijun Liao,et al.  Analytic solutions of the temperature distribution in Blasius viscous flow problems , 2002, Journal of Fluid Mechanics.

[10]  K. Rajagopal,et al.  The effect of the slip boundary condition on the flow of fluids in a channel , 1999 .

[11]  P. Hilton An Introduction to Homotopy Theory , 1953 .

[12]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[13]  H. B. Keller,et al.  Computations of Taylor Vortex Flows Using Multigrid Continuation Methods , 1989 .

[14]  L. Scriven,et al.  Separating how near a static contact line: Slip at a wall and shape of a free surface , 1980 .

[15]  G. V. Vinogradov,et al.  Viscoelastic properties and flow of narrow distribution polybutadienes and polyisoprenes , 1972 .

[16]  S. Liao AN EXPLICIT TOTALLY ANALYTIC APPROXIMATION OF BLASIUS VISCOUS FLOW PROBLEMS , 1999 .

[17]  J. Murdock Perturbations: Theory and Methods , 1987 .

[18]  Tony F. Chan,et al.  Arc-Length Continuation and Multigrid Techniques for Nonlinear Elliptic Eigenvalue Problems , 1982 .

[19]  G. Adomian Nonlinear stochastic differential equations , 1976 .

[20]  F. J. Lim,et al.  Wall slip of narrow molecular weight distribution polybutadienes , 1989 .

[21]  Shijun Liao An explicit analytic solution to the Thomas-Fermi equation , 2003, Appl. Math. Comput..

[22]  S. Liao,et al.  Application of Homotopy Analysis Method in Nonlinear Oscillations , 1998 .

[23]  Hinch Perturbation Methods , 1991 .

[24]  Tasawar Hayat,et al.  Magnetohydrodynamic flow of an Oldroyd 6-constant fluid , 2004, Appl. Math. Comput..

[25]  G. Vinogradov,et al.  Wall slippage and elastic turbulence of polymers in the rubbery state , 1968 .

[26]  Kumbakonam R. Rajagopal,et al.  Some simple flows of a Johnson-Segalman fluid , 1999 .

[27]  S. Liao An analytic approximation of the drag coefficient for the viscous flow past a sphere , 2002 .

[28]  Vimal Singh,et al.  Perturbation methods , 1991 .

[29]  Ioan Pop,et al.  On the explicit analytic solution of Cheng-Chang equation , 2003 .

[30]  J. Yorke,et al.  The homotopy continuation method: numerically implementable topological procedures , 1978 .