Optimal Stopping for Non-Linear Expectations - Part II

Relying on the stochastic analysis tools developed in Bayraktar and Yao (2011) [1], we solve the optimal stopping problems for non-linear expectations.

[1]  S. Peng,et al.  Filtration-consistent nonlinear expectations and related g-expectations , 2002 .

[2]  Erhan Bayraktar,et al.  Optimal Stopping for Non-Linear Expectations - Part I , 2009 .

[3]  D. Sworder Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[4]  V. Benes Existence of Optimal Strategies Based on Specified Information, for a Class of Stochastic Decision Problems , 1970 .

[5]  Emanuela Rosazza Gianin,et al.  Risk measures via g-expectations , 2006 .

[6]  S. Peng Nonlinear Expectations, Nonlinear Evaluations and Risk Measures , 2004 .

[7]  Ying Hu,et al.  A Converse Comparison Theorem for BSDEs and Related Properties of g-Expectation , 2000 .

[8]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[9]  Ying Hu,et al.  Quadratic BSDEs with convex generators and unbounded terminal conditions , 2007, math/0703423.

[10]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[11]  Erhan Bayraktar,et al.  Quadratic Reflected BSDEs with Unbounded Obstacles , 2010, 1005.3565.

[12]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[13]  I. Karatzas,et al.  Martingale Approach to Stochastic Control with Discretionary Stopping , 2006 .

[14]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[15]  Robert J. Elliott,et al.  Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[16]  Long Jiang,et al.  Convexity, translation invariance and subadditivity for g-expectations and related risk measures , 2008 .

[17]  S. Peng Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyers type , 1999 .