Front capturing by level set method for the reactive Euler equations

[1]  Song Jiang,et al.  Remapping-free ALE-type kinetic method for flow computations , 2009, J. Comput. Phys..

[2]  James J. Quirk,et al.  Godunov-Type Schemes Applied to Detonation Flows , 1994 .

[3]  Nikolaus A. Adams,et al.  A conservative interface-interaction method for compressible multi-material flows , 2017, J. Comput. Phys..

[4]  Nikolaus A. Adams,et al.  A conservative interface method for compressible flows , 2006, J. Comput. Phys..

[5]  Weizhu Bao,et al.  The Random Projection Method for Hyperbolic Conservation Laws with Stiff Reaction Terms , 2000 .

[6]  Andrew J. Majda,et al.  Theoretical and numerical structure for unstable two-dimensional detonations , 1992 .

[7]  Chi-Wang Shu,et al.  High order finite difference methods with subcell resolution for advection equations with stiff source terms , 2012, J. Comput. Phys..

[8]  Zhiqiu Li,et al.  High Order Weighted Essentially Non-Oscillation Schemes For One-Dimensional Detonation Wave Simulations , 2011 .

[9]  Bin Zhang,et al.  The equilibrium state method for hyperbolic conservation laws with stiff reaction terms , 2014, J. Comput. Phys..

[10]  Boo Cheong Khoo,et al.  The ghost fluid method for compressible gas-water simulation , 2005 .

[11]  Yongsheng Lian,et al.  No . 99-28 A Gas-kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction , 2022 .

[12]  Feng Xiao,et al.  A Direct ALE Multi-Moment Finite Volume Scheme for the Compressible Euler Equations , 2018 .

[13]  P. Colella,et al.  Theoretical and numerical structure for reacting shock waves , 1986 .

[14]  H. Holden,et al.  Front Tracking for Hyperbolic Conservation Laws , 2002 .

[15]  Luigi Vigevano,et al.  Numerical solution of under-resolved detonations , 2008, J. Comput. Phys..

[16]  Tariq D. Aslam,et al.  High-order shock-fitted detonation propagation in high explosives , 2017, J. Comput. Phys..

[17]  Xianyang Zeng,et al.  An efficient numerical method for reactive flow with general equation of states , 2016 .

[18]  Andrew J. Majda,et al.  Theoretical and numerical structure for unstable one-dimensional detonations , 1991 .

[19]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[20]  Rolf Jeltsch,et al.  Error estimators for the position of discontinuities in hyperbolic conservation laws with source terms which are solved using operator splitting , 1999 .

[21]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[22]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[23]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[24]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[25]  Francky Luddens,et al.  Enablers for high‐order level set methods in fluid mechanics , 2015 .

[26]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[27]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[28]  Ronald Fedkiw,et al.  A review of level-set methods and some recent applications , 2018, J. Comput. Phys..