Using the Fast Fourier Transform to Accelerate the Computational Search for RNA Conformational Switches

Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor, that computes the Boltzmann probability that secondary structures differ by base pairs from an arbitrary initial structure of a given RNA sequence. The algorithm, which runs in quartic time and quadratic space , is used to determine the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.

[1]  Sean R. Eddy,et al.  Infernal 1.0: inference of RNA alignments , 2009, Bioinform..

[2]  P. Clote,et al.  Computing folding pathways between RNA secondary structures , 2009, Nucleic acids research.

[3]  Hsien-Da Huang,et al.  Computational identification of riboswitches based on RNA conserved functional sequences and conformations. , 2009, RNA.

[4]  Klara Kedem,et al.  STR2: A structure to string approach for locating G-box riboswitch shapes in pre-selected genes , 2004, Silico Biol..

[5]  P. Schuster,et al.  RNA folding at elementary step resolution. , 1999, RNA.

[6]  Pradipta Bandyopadhyay,et al.  Riboswitch Detection Using Profile Hidden Markov Models , 2009, BMC Bioinformatics.

[7]  Peter Clote,et al.  Boltzmann probability of RNA structural neighbors and riboswitch detection , 2007, Bioinform..

[8]  S. Altschul,et al.  Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage. , 1985, Molecular biology and evolution.

[9]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[10]  D. Turner,et al.  Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. , 1998, Biochemistry.

[11]  Anne Condon,et al.  A new algorithm for RNA secondary structure design. , 2004, Journal of molecular biology.

[12]  Niles A. Pierce,et al.  Nucleic acid sequence design via efficient ensemble defect optimization , 2011, J. Comput. Chem..

[13]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[14]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[15]  J. Waldispühl,et al.  WEB SUPPLEMENT : Exploring the energy landscape of k-point mutagens of RNA , .

[16]  Yann Ponty,et al.  An Unbiased Adaptive Sampling Algorithm for the Exploration of RNA Mutational Landscapes Under Evolutionary Pressure , 2011, J. Comput. Biol..

[17]  V. Moulton,et al.  Predicting RNA Structure Using Mutual Information , 2005, Applied bioinformatics.

[18]  Robert D. Finn,et al.  Rfam: Wikipedia, clans and the “decimal” release , 2010, Nucleic Acids Res..

[19]  C. Lawrence,et al.  A statistical sampling algorithm for RNA secondary structure prediction. , 2003, Nucleic acids research.

[20]  P. Wolynes Energy landscapes and solved protein–folding problems , 2004, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Thomas F Knight Engineering novel life , 2005, Molecular systems biology.

[22]  R. Nussinov,et al.  Fast algorithm for predicting the secondary structure of single-stranded RNA. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Serganov,et al.  Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. , 2004, Chemistry & biology.

[24]  Rolf Backofen,et al.  INFO-RNA - a fast approach to inverse RNA folding , 2006, Bioinform..

[25]  P. Stadler,et al.  Design of multistable RNA molecules. , 2001, RNA.

[26]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[27]  J. Onuchic,et al.  Funnels, pathways, and the energy landscape of protein folding: A synthesis , 1994, Proteins.

[28]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .

[29]  Peter Clote,et al.  Maximum expected accuracy structural neighbors of an RNA secondary structure , 2012, BMC Bioinformatics.

[30]  R. Breaker,et al.  Riboswitches as versatile gene control elements. , 2005, Current opinion in structural biology.

[31]  Srinivas Devadas,et al.  Efficient Algorithms for Probing the RNA Mutation Landscape , 2008, PLoS Comput. Biol..

[32]  Enrique Merino,et al.  RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements , 2005, Nucleic Acids Res..

[33]  Thomas Dandekar,et al.  Riboswitch finder tool for identification of riboswitch RNAs , 2004, Nucleic Acids Res..

[34]  Drew Endy,et al.  Engineering BioBrick vectors from BioBrick parts , 2008, Journal of Biological Engineering.

[35]  Jeffrey E. Barrick,et al.  Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria , 2003, Cell.

[36]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[37]  Torsten Waldminghaus,et al.  Generation of synthetic RNA-based thermosensors , 2008, Biological chemistry.

[38]  R. Breaker,et al.  Adenine riboswitches and gene activation by disruption of a transcription terminator , 2004, Nature Structural &Molecular Biology.