Limitations on continuous variable quantum algorithms with Fourier transforms

We study quantum algorithms implemented within a single harmonic oscillator, or equivalently within a single mode of the electromagnetic field. Logical states correspond to functions of the canonical position, and the Fourier transform to canonical momentum serves as the analogue of the Hadamard transform for this implementation. This continuous variable version of quantum information processing has widespread appeal because of advanced quantum optics technology that can create, manipulate and read Gaussian states of light. We show that, contrary to a previous claim, this implementation of quantum information processing has limitations due to a position?momentum trade-off of the Fourier transform, analogous to the famous time-bandwidth theorem of signal processing.

[1]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[3]  Robert Spalek,et al.  Lower Bounds on Quantum Query Complexity , 2005, Bull. EATCS.

[4]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[5]  Mark R.A. Adcock The classical and quantum complexity of the Goldreich-Levin problem with applications to bit commitment , 2004 .

[6]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[7]  F. Arecchi,et al.  Atomic coherent states in quantum optics , 1972 .

[8]  R. Blume-Kohout,et al.  Climbing Mount Scalable: Physical Resource Requirements for a Scalable Quantum Computer , 2002, quant-ph/0204157.

[9]  R. Madrid The role of the rigged Hilbert space in quantum mechanics , 2005, quant-ph/0502053.

[10]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[11]  J. Cirac,et al.  De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. , 2008, Physical review letters.

[12]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[13]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.

[14]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[15]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[16]  D. Korystov,et al.  Quantum memory for squeezed light. , 2007, Physical review letters.

[17]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[18]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[19]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  Richard Cleve,et al.  A Quantum Goldreich-Levin Theorem with Cryptographic Applications , 2002, STACS.

[21]  Samuel L. Braunstein Error Correction for Continuous Quantum Variables , 1998 .

[22]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[23]  Samuel L. Braunstein,et al.  Deutsch-Jozsa Algorithm for Continuous Variables , 2003 .

[24]  R. Bracewell The Fourier Transform and Its Applications , 1966 .

[25]  Alain Tapp,et al.  Quantum Entanglement and the Communication Complexity of the Inner Product Function , 1998, QCQC.

[26]  J Eisert,et al.  Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.

[27]  B. Sanders,et al.  Quantum encodings in spin systems and harmonic oscillators , 2001, quant-ph/0109066.

[28]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[29]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[30]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[31]  Andris Ambainis,et al.  Robust Quantum Algorithms for Oracle Identification (計算機科学基礎理論とその応用 研究集会報告集) , 2004 .

[32]  H. Paul,et al.  Measuring the quantum state of light , 1997 .

[33]  D. Akamatsu,et al.  Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency. , 2006, Physical review letters.

[34]  Barry C Sanders,et al.  Efficient classical simulation of optical quantum information circuits. , 2002, Physical review letters.