Iminothioindoxyl as a molecular photoswitch with 100 nm band separation in the visible range

[1]  J. Ahlfeld,et al.  Hemithioindigos for Cellular Photopharmacology: Desymmetrised Molecular Switch Scaffolds Enabling Design Control over the Isomer‐Dependency of Potent Antimitotic Bioactivity , 2019, Chembiochem : a European journal of chemical biology.

[2]  Christopher G. Elles,et al.  Ultrafast Dynamics of Encapsulated Molecules Reveals New Insight on the Photoisomerization Mechanism for Azobenzenes. , 2018, The journal of physical chemistry letters.

[3]  Lingyun Zhou,et al.  Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging. , 2018, Angewandte Chemie.

[4]  G. Ellis‐Davies,et al.  Thermodynamically Stable, Photoreversible Pharmacology in Neurons with One- and Two-Photon Excitation. , 2018, Angewandte Chemie.

[5]  I. Aprahamian,et al.  Building Strain with Large Macrocycles and Using It To Tune the Thermal Half-Lives of Hydrazone Photochromes. , 2018, Journal of the American Chemical Society.

[6]  Mark W. H. Hoorens,et al.  Reversible, Spatial and Temporal Control over Protein Activity Using Light. , 2018, Trends in biochemical sciences.

[7]  Jared D. Harris,et al.  New molecular switch architectures , 2018, Proceedings of the National Academy of Sciences.

[8]  Dirk Trauner,et al.  In Vivo Photopharmacology. , 2018, Chemical reviews.

[9]  R. Merkl,et al.  Artificial Light Regulation of an Allosteric Bienzyme Complex by a Photosensitive Ligand , 2018, Chembiochem : a European journal of chemical biology.

[10]  A. Miyawaki,et al.  Infrared spectroscopy reveals multi-step multi-timescale photoactivation in the photoconvertible protein archetype dronpa , 2018, Nature Chemistry.

[11]  E. Isacoff,et al.  Restoring Vision to the Blind with Chemical Photoswitches. , 2018, Chemical reviews.

[12]  Christian Petermayer,et al.  Indigoid Photoswitches: Visible Light Responsive Molecular Tools. , 2018, Accounts of chemical research.

[13]  B. Feringa,et al.  The (photo)chemistry of Stenhouse photoswitches: guiding principles and system design. , 2018, Chemical Society reviews.

[14]  Anouk S. Lubbe,et al.  Photoswitching of DNA Hybridization Using a Molecular Motor , 2018, Journal of the American Chemical Society.

[15]  S. Mukamel,et al.  UV-Light-Induced Vibrational Coherences: The Key to Understand Kasha Rule Violation in trans-Azobenzene. , 2018, The journal of physical chemistry letters.

[16]  S. Richardson,et al.  Photoresponsive Hydrogels with Photoswitchable Mechanical Properties Allow Time-Resolved Analysis of Cellular Responses to Matrix Stiffening , 2018, ACS applied materials & interfaces.

[17]  B. Feringa,et al.  Photocontrol of Antibacterial Activity: Shifting from UV to Red Light Activation , 2017, Journal of the American Chemical Society.

[18]  S. Hecht,et al.  N,N'-Disubstituted Indigos as Readily Available Red-Light Photoswitches with Tunable Thermal Half-Lives. , 2017, Journal of the American Chemical Society.

[19]  O. Sadovski,et al.  Near-Infrared Photoswitching of Azobenzenes under Physiological Conditions. , 2017, Journal of the American Chemical Society.

[20]  J. Zweig,et al.  Isomer-Specific Hydrogen Bonding as a Design Principle for Bidirectionally Quantitative and Redshifted Hemithioindigo Photoswitches. , 2017, Journal of the American Chemical Society.

[21]  I. Aprahamian,et al.  Photochromic Hydrazone Switches with Extremely Long Thermal Half-Lives. , 2017, Journal of the American Chemical Society.

[22]  T. Soeta,et al.  Efficient synthesis of benzothiophenes by [4+1] cycloaddition of 2-mercaptobenzaldehyde derivatives with isocyanides , 2016 .

[23]  R. Mart,et al.  Azobenzene photocontrol of peptides and proteins. , 2016, Chemical communications.

[24]  D. Qu,et al.  Photo-powered stretchable nano-containers based on well-defined vesicles formed by an overcrowded alkene switch. , 2016, Chemical communications.

[25]  W. Zinth,et al.  Twisted Hemithioindigo Photoswitches: Solvent Polarity Determines the Type of Light-Induced Rotations. , 2016, Journal of the American Chemical Society.

[26]  Gooitzen M van Dam,et al.  Emerging Targets in Photopharmacology. , 2016, Angewandte Chemie.

[27]  Mingshu Zhang,et al.  Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy , 2016, Proceedings of the National Academy of Sciences.

[28]  T. Cordes,et al.  Light-Switchable Peptides with a Hemithioindigo Unit: Peptide Design, Photochromism, and Optical Spectroscopy. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  C. Corminboeuf,et al.  Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods , 2016, Journal of chemical theory and computation.

[30]  V. Prokhorenko,et al.  Local vibrational coherences drive the primary photochemistry of vision. , 2015, Nature chemistry.

[31]  J. Lehn,et al.  Synthetic Molecular Motors: Thermal N Inversion and Directional Photoinduced C=N Bond Rotation of Camphorquinone Imines. , 2015, Angewandte Chemie.

[32]  S. Hecht,et al.  Acylhydrazones as Widely Tunable Photoswitches. , 2015, Journal of the American Chemical Society.

[33]  S. Hecht,et al.  Visible-Light-Activated Molecular Switches. , 2015, Angewandte Chemie.

[34]  H. Dube,et al.  Hemithioindigo—an emerging photoswitch , 2015 .

[35]  D. Trauner,et al.  A roadmap to success in photopharmacology. , 2015, Accounts of Chemical Research.

[36]  Sven Oesterling,et al.  Making fast photoswitches faster--using Hammett analysis to understand the limit of donor-acceptor approaches for faster hemithioindigo photoswitches. , 2014, Chemistry.

[37]  J. Lehn,et al.  Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. , 2014, Journal of the American Chemical Society.

[38]  Kira E. Poskanzer,et al.  Two-Photon Neuronal and Astrocytic Stimulation with Azobenzene-Based Photoswitches , 2014, Journal of the American Chemical Society.

[39]  A. Dreuw,et al.  Investigating excited electronic states using the algebraic diagrammatic construction (ADC) approach of the polarisation propagator , 2014 .

[40]  Wiktor Szymanski,et al.  Photopharmacology: beyond proof of principle. , 2014, Journal of the American Chemical Society.

[41]  Dirk Trauner,et al.  A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. , 2013, Journal of the American Chemical Society.

[42]  M. Jamróz Vibrational energy distribution analysis (VEDA): scopes and limitations. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[43]  Adèle D. Laurent,et al.  TD-DFT benchmarks: A review , 2013 .

[44]  R. Gschwind,et al.  LED based NMR illumination device for mechanistic studies on photochemical reactions--versatile and simple, yet surprisingly powerful. , 2013, Journal of magnetic resonance.

[45]  John M. Beierle,et al.  Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. , 2013, Chemical reviews.

[46]  Katharine M. Mullen,et al.  Glotaran: A Java-Based Graphical User Interface for the R Package TIMP , 2012 .

[47]  G Andrew Woolley,et al.  Azobenzene photoswitches for biomolecules. , 2011, Chemical Society reviews.

[48]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[49]  Andrew A. Beharry,et al.  Spectral tuning of azobenzene photoswitches for biological applications. , 2009, Angewandte Chemie.

[50]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[51]  Jean-Marie Lehn,et al.  Conjecture: imines as unidirectional photodriven molecular motors-motional and constitutional dynamic devices. , 2006, Chemistry.

[52]  J. Dobrowolski,et al.  Vibrational modes of 2,6-, 2,7-, and 2,3-diisopropylnaphthalene. A DFT study , 2006 .

[53]  Jacopo Tomasi,et al.  Formation and relaxation of excited states in solution: a new time dependent polarizable continuum model based on time dependent density functional theory. , 2006, The Journal of chemical physics.

[54]  Rienk van Grondelle,et al.  Global and target analysis of time-resolved spectra. , 2004, Biochimica et biophysica acta.

[55]  S. Kamila,et al.  Application of Directed Metalation in Synthesis. Part 4. Expedient Synthesis of Substituted Benzo[b]thiophene and Naphthothiophene. , 2003 .

[56]  S. Kamila,et al.  Application of directed metalation in synthesis. Part 4: Expedient synthesis of substituted benzo[b]thiophene and naphthothiophene , 2003 .

[57]  A. Shaabani,et al.  Semiempirical molecular orbital calculation of azobenzene: stability study of isomers and mechanism of E/Z isomerization , 2000 .

[58]  H. Jodl,et al.  Experimental setup for Fourier transform infrared spectroscopy studies in condensed matter at high pressure and low temperatures , 1997 .

[59]  E. Henry,et al.  The use of matrix methods in the modeling of spectroscopic data sets. , 1997, Biophysical journal.

[60]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[61]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[62]  T. Keith,et al.  A comparison of models for calculating nuclear magnetic resonance shielding tensors , 1996 .

[63]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[64]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[65]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[66]  A. Merbach,et al.  A simple multinuclear NMR thermometer , 1982 .

[67]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[68]  R. C. Macridis A review , 1963 .

[69]  R. Pummerer Über Isatin-anile. II. Derivate des Thionaphthenchinons , 1910 .

[70]  W. G. Levine Metabolism of azo dyes: implication for detoxication and activation. , 1991, Drug metabolism reviews.

[71]  P. Friedländer,et al.  Über einige Derivate des Thionaphthens , 1908 .