Receptive versus perceptive fields from the reverse-correlation viewpoint

[1]  Roger W Li,et al.  The receptive field and internal noise for position acuity change with feature separation. , 2006, Journal of vision.

[2]  J. Victor Analyzing receptive fields, classification images and functional images: challenges with opportunities for synergy , 2005, Nature Neuroscience.

[3]  Richard F Murray,et al.  Classification images predict absolute efficiency. , 2005, Journal of vision.

[4]  Peter Neri,et al.  Attentional effects on sensory tuning for single-feature detection and double-feature conjunction , 2004, Vision Research.

[5]  Alexander Grunewald,et al.  The Integration of Multiple Stimulus Features by V1 Neurons , 2004, The Journal of Neuroscience.

[6]  J. Maunsell,et al.  Attentional Modulation of Motion Integration of Individual Neurons in the Middle Temporal Visual Area , 2004, The Journal of Neuroscience.

[7]  A. Parker,et al.  Comparing perceptual signals of single V5/MT neurons in two binocular depth tasks. , 2004, Journal of neurophysiology.

[8]  D. Ringach Mapping receptive fields in primary visual cortex , 2004, The Journal of physiology.

[9]  Dario L. Ringach,et al.  Reverse correlation in neurophysiology , 2004, Cogn. Sci..

[10]  P. Neri Estimation of nonlinear psychophysical kernels. , 2004, Journal of vision.

[11]  Marisa Carrasco,et al.  Covert attention enhances letter identification without affecting channel tuning. , 2004, Journal of vision.

[12]  P. Schyns,et al.  Superstitious Perceptions Reveal Properties of Internal Representations , 2003, Psychological science.

[13]  Richard F Murray,et al.  A linear cue combination framework for understanding selective attention. , 2003, Journal of vision.

[14]  Eero P. Simoncelli,et al.  Seeing patterns in the noise , 2003, Trends in Cognitive Sciences.

[15]  Larry N. Thibos,et al.  Validation of a clinical aberrometer , 2002 .

[16]  Bruce G Cumming,et al.  A simple model accounts for the response of disparity-tuned V1 neurons to anticorrelated images , 2002, Visual Neuroscience.

[17]  Yaffa Yeshurun,et al.  Covert attention increases spatial resolution with or without masks: support for signal enhancement. , 2002, Journal of vision.

[18]  B. G. Cumming,et al.  An unexpected specialization for horizontal disparity in primate primary visual cortex , 2002, Nature.

[19]  David J. Heeger,et al.  Spatiotemporal mechanisms for detecting and identifying image features in human vision , 2002, Nature Neuroscience.

[20]  D. Ringach Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. , 2002, Journal of neurophysiology.

[21]  P. Verghese Visual Search and Attention A Signal Detection Theory Approach , 2001, Neuron.

[22]  F. A. Miles,et al.  Single-unit activity in cortical area MST associated with disparity-vergence eye movements: evidence for population coding. , 2001, Journal of neurophysiology.

[23]  S. Treue Neural correlates of attention in primate visual cortex , 2001, Trends in Neurosciences.

[24]  B. Dosher,et al.  Mechanisms of perceptual attention in precuing of location , 2000, Vision Research.

[25]  Colin Blakemore,et al.  Probing the human stereoscopic system with reverse correlation , 1999, Nature.

[26]  A. Parker,et al.  Binocular Neurons in V1 of Awake Monkeys Are Selective for Absolute, Not Relative, Disparity , 1999, The Journal of Neuroscience.

[27]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[28]  C. Koch,et al.  Attention activates winner-take-all competition among visual filters , 1999, Nature Neuroscience.

[29]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[30]  Marisa Carrasco,et al.  Attention improves or impairs visual performance by enhancing spatial resolution , 1998, Nature.

[31]  B G Cumming,et al.  Disparity Detection in Anticorrelated Stereograms , 1998, Perception.

[32]  Izumi Ohzawa,et al.  Mechanisms of stereoscopic vision: the disparity energy model , 1998, Current Opinion in Neurobiology.

[33]  B. Dosher,et al.  External noise distinguishes attention mechanisms , 1998, Vision Research.

[34]  D. Ringach,et al.  Tuning of orientation detectors in human vision , 1998, Vision Research.

[35]  B. G. Cumming,et al.  Responses of primary visual cortical neurons to binocular disparity without depth perception , 1997, Nature.

[36]  Guillermo Sapiro,et al.  A subspace reverse-correlation technique for the study of visual neurons , 1997, Vision Research.

[37]  Christopher W. Tyler,et al.  One Eye is Usually Centred Horizontally (and near the Golden Section Vertically) in Portraits over the Past 500 Years , 1997 .

[38]  R. Shapley,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[39]  A. Ahumada Perceptual Classification Images from Vernier Acuity Masked by Noise , 1996 .

[40]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[41]  R Blake,et al.  Binocular Disparity Processing with Opposite-Contrast Stimuli , 1995, Perception.

[42]  Alexander I. Cogan,et al.  Depth in anticorrelated stereograms: Effects of spatial density and interocular delay , 1993, Vision Research.

[43]  D. Levi,et al.  Orientation, masking, and vernier acuity for line targets , 1993, Vision Research.

[44]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[45]  H M Sakai,et al.  White-noise analysis in visual neuroscience , 1988, Visual Neuroscience.

[46]  A E Burgess,et al.  Visual signal detection. IV. Observer inconsistency. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[47]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[48]  Colin Blakemore,et al.  Interactions between orientations in human vision , 1973, Experimental Brain Research.

[49]  J. Pokorny Foundations of Cyclopean Perception , 1972 .

[50]  A. Ahumada,et al.  Stimulus Features in Signal Detection , 1971 .

[51]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[52]  P. O. Bishop,et al.  Analysis of retinal correspondence by studying receptive fields of rinocular single units in cat striate cortex , 2004, Experimental Brain Research.

[53]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[54]  A. Ahumada Classification image weights and internal noise level estimation. , 2002, Journal of vision.

[55]  Miguel P Eckstein,et al.  Classification image analysis: estimation and statistical inference for two-alternative forced-choice experiments. , 2002, Journal of vision.

[56]  Richard F Murray,et al.  Optimal methods for calculating classification images: weighted sums. , 2002, Journal of vision.

[57]  Miguel P Eckstein,et al.  Classification images: a tool to analyze visual strategies. , 2002, Journal of vision.

[58]  Miguel P Eckstein,et al.  The footprints of visual attention in the Posner cueing paradigm revealed by classification images. , 2002, Journal of vision.

[59]  Joshua A Solomon,et al.  Noise reveals visual mechanisms of detection and discrimination. , 2002, Journal of vision.

[60]  A. Parker,et al.  Sense and the single neuron: probing the physiology of perception. , 1998, Annual review of neuroscience.

[61]  A J Parker,et al.  Binocular disparity processing with opposite-contrast stimuli. , 1995 .

[62]  B. Wandell Foundations of vision , 1995 .

[63]  P. O. Bishop NEURAL MECHANISMS FOR BINOCULAR DEPTH DISCRIMINATION , 1981 .

[64]  Makarov Ia,et al.  Binocular interaction in the visual cortex during changes in the intensity of monocular stimuli in different directions , 1979 .

[65]  Vision Research , 1961, Nature.