Bespoke photonic devices using ultrafast laser driven ion migration in glasses

Abstract This Review provides an exhaustive and detailed description of ion migration phenomena which occur inside transparent dielectric media due to the interaction with intense ultrashort pulses. The paper differentiates various processes underlying the ion migration influenced by simultaneous heat accumulation and diffusion. The femtosecond laser induced temperature distribution, the major driving force of ions in dielectrics, is described in detail. This discussion is based on three meticulous analysis methods including the thermal modification of transparent dielectrics at various ambient temperatures, numerical simulations and comparison with direct observation of the light-matter interaction and micro-Raman spectroscopy. The ion migration phenomena studied have been triggered in four different configurations: at low repetition and high repetition rates, and observations perpendicular and parallel to the laser irradiation direction. Inspired by this research, potential applications are highlighted including space-selective phase separation, a laser-based ion exchange fabrication method and optical micropipetting by tailoring the plasma profile.

[1]  Jason R. Grenier,et al.  Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits. , 2011, Optics express.

[2]  Masaaki Sakakura,et al.  Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates. , 2012, Optics express.

[3]  Andy Steinmann,et al.  High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator. , 2005, Optics letters.

[4]  Lihmei Yang,et al.  Structural modification in Er-Yb doped zinc phosphate glasses with megahertz repetition rate femtosecond pulses , 2012, Other Conferences.

[5]  Huan Huang,et al.  Ultrafast Laser Fabrication of Hybrid Micro‐ and Nano‐Structures in Semiconductor‐doped Borosilicate Glasses , 2013 .

[6]  Stephen Ho,et al.  Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. , 2008, Optics express.

[7]  K Miura,et al.  Writing Waveguides and Gratings in Silica and Related Materials by Femto-Second Laser , 1998, Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals.

[8]  Perry,et al.  Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. , 1996, Physical review. B, Condensed matter.

[9]  P. Corkum,et al.  Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching , 2006 .

[10]  Carl W. Ponader,et al.  Origin of the refractive-index increase in laser-written waveguides in glasses , 2008 .

[11]  S. Nolte,et al.  Transmission electron microscopy studies of femtosecond laser induced modifications in quartz , 2003 .

[12]  D. Walker,et al.  The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids , 1998 .

[13]  Andreas Tünnermann,et al.  Ultrashort pulse laser processing of silica at high repetition rates—from network change to residual strain , 2017 .

[14]  David C. Joy,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 2017 .

[15]  Masaaki Sakakura,et al.  Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses , 2010 .

[16]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[17]  J. S. Aitchison,et al.  Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser , 2008 .

[18]  Roberto Osellame,et al.  Micromachining of photonic devices by femtosecond laser pulses , 2008 .

[19]  R. Osellame,et al.  Femtosecond laser micromachining : photonic and microfluidic devices in transparent materials , 2012 .

[20]  R. Brückner,et al.  Properties and structure of vitreous silica. I , 1970 .

[21]  Kazuyuki Hirao,et al.  Space-selective precipitation of non-linear optical crystals inside silicate glasses using near-infrared femtosecond laser , 2005 .

[22]  Yasuhiko Shimotsuma,et al.  Nanofabrication in transparent materials with a femtosecond pulse laser , 2006 .

[23]  Joseph S. Hayden,et al.  Waveguide fabrication in phosphate glasses using femtosecond laser pulses , 2003 .

[24]  R Osellame,et al.  Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass. , 2010, Optics express.

[25]  Kazuyoshi Itoh,et al.  Structural modification in fused silica by a femtosecond fiber laser at 1558 nm. , 2006, Optics express.

[26]  J. P. Callan,et al.  Three-dimensional optical storage inside transparent materials. , 1996, Optics letters.

[27]  Eric Mazur,et al.  Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses , 2001 .

[28]  Martin Ams,et al.  Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. , 2005, Optics express.

[29]  T. Fernandez,et al.  Laser Writing in Tellurite Glasses , 2017 .

[30]  Razvan Stoian,et al.  Dynamics of femtosecond laser induced voidlike structures in fused silica , 2009 .

[31]  C. Depeursinge,et al.  Femtosecond irradiation induced refractive-index changes and channel waveguiding in bulk Ti/sup 3+/:sapphire , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[32]  U. Morgner,et al.  Cascaded-focus laser writing of low-loss waveguides in polymers. , 2016, Optics letters.

[33]  L. Knight,et al.  Laser-induced thermal lens effect: a new theoretical model. , 1982, Applied optics.

[34]  P. Meynadier,et al.  Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals , 1997 .

[35]  R. Osellame,et al.  Er : Yb-Doped Oxyfluoride Silicate Glass Waveguide Laser Fabricated Using Ultrafast Laser Inscription , 2008, IEEE Photonics Technology Letters.

[36]  Peter G. Kazansky,et al.  Ultrashort-pulse laser calligraphy , 2008 .

[37]  Nicholas F. Borrelli,et al.  Study of femtosecond-laser-written waveguides in glasses , 2002 .

[38]  Martin Richardson,et al.  Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate). , 2004, Optics letters.

[39]  M. Lancry,et al.  Nanoscale Phase Separation in Lithium Niobium Silicate Glass by Femtosecond Laser Irradiation , 2017 .

[40]  Günther Paltauf,et al.  Photomechanical processes and effects in ablation. , 2003, Chemical reviews.

[41]  Jan Siegel,et al.  Deep subsurface waveguides with circular cross section produced by femtosecond laser writing , 2007 .

[42]  A. Couairon,et al.  Femtosecond laser-induced damage and filamentary propagation in fused silica. , 2002, Physical review letters.

[43]  K Miura,et al.  Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse. , 2007, Optics express.

[44]  Saulius Juodkazis,et al.  Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass. , 2011, Optics express.

[45]  See Leang Chin,et al.  Ultrafast white-light continuum generation and self-focusing in transparent condensed media , 1999 .

[46]  M J Withford,et al.  Annealing dynamics of waveguide Bragg gratings: evidence of femtosecond laser induced colour centres. , 2010, Optics express.

[47]  O. Svelto,et al.  Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  T F Johnston,et al.  Beam propagation (m(2)) measurement made as easy as it gets: the four-cuts method. , 1998, Applied optics.

[49]  Eric Mazur,et al.  Microexplosions in tellurite glasses , 2003 .

[50]  Michael Schmidt,et al.  Internal modification of glass by ultrashort laser pulse and its application to microwelding , 2014 .

[51]  J. Qiu,et al.  Precipitation of bismuth nanoparticles and elements distribution in bismuth germanate glass induced by femtosecond laser , 2014 .

[52]  J. Gottmann,et al.  Local Melting of Glass Material and Its Application to Direct Fusion Welding by Ps-laser Pulses , 2007 .

[53]  L. Shah,et al.  High-Power Ultrashort-Pulse Fiber Amplifiers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[54]  Daniel W. Hewak,et al.  Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass , 2007, 2110.10471.

[55]  A. Clare,et al.  Evaluation of phase separation in glasses with the use of atomic force microscopy , 2007 .

[56]  Daniel Jaque,et al.  Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides , 2008 .

[57]  R Osellame,et al.  Role of ion migrations in ultrafast laser written tellurite glass waveguides. , 2014, Optics express.

[58]  K. Sugioka,et al.  Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding. , 2013, Optics express.

[59]  Masaaki Sakakura,et al.  Shape control of elemental distributions inside a glass by simultaneous femtosecond laser irradiation at multiple spots. , 2013, Optics letters.

[60]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[61]  Zhi‐zhan Xu,et al.  Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens , 2011 .

[62]  Costantino Corbari,et al.  Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing. , 2008, Optics express.

[63]  Roberta Ramponi,et al.  Femtosecond laser microstructuring for polymeric lab‐on‐chips , 2012, Journal of biophotonics.

[64]  Michael Schmidt,et al.  Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses. , 2011, Optics express.

[65]  J Bengtsson Kinoform design with an optimal-rotation-angle method. , 1994, Applied optics.

[66]  Masaaki Sakakura,et al.  Elastic and Thermal Dynamics in Femtosecond Laser-Induced Structural Change Inside Glasses Studied by the Transient Lens Method , 2010 .

[67]  B Luther-Davies,et al.  Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. , 2006, Physical review letters.

[68]  J. F. Power,et al.  Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory. , 1990, Applied optics.

[69]  S. Braslavsky,et al.  Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution , 1992 .

[70]  S. Pennycook Structure determination through Z-contrast microscopy , 2002 .

[71]  Kazuyoshi Itoh,et al.  In situ Micro-Raman Investigation of Spatio-Temporal Evolution of Heat in Ultrafast Laser Microprocessing of Glass , 2012 .

[72]  Bianca Schreder,et al.  Femtosecond laser-induced refractive index modification in multicomponent glasses , 2005 .

[73]  Jeremy L O'Brien,et al.  Laser written waveguide photonic quantum circuits. , 2009, Optics express.

[74]  Bernard Prade,et al.  Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses , 1999 .

[75]  Tsuneo Mitsuyu,et al.  Photowritten optical waveguides in various glasses with ultrashort pulse laser , 1997 .

[76]  Andreas Tünnermann,et al.  Tuning the structural properties of femtosecond-laser-induced nanogratings , 2010 .

[77]  Zhizhan Xu,et al.  Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser. , 2010, Optics express.

[78]  Andreas Tünnermann,et al.  On the fundamental structure of femtosecond laser‐induced nanogratings , 2012 .

[79]  David Walker,et al.  Soret separation of mid-ocean ridge basalt magma , 1982 .

[80]  H. Kahnt Ionic transport in glasses , 1996 .

[81]  D. Moss,et al.  Ultrafast all-optical chalcogenide glass photonic circuits , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[82]  P. Corkum,et al.  Optically produced arrays of planar nanostructures inside fused silica. , 2006, Physical review letters.

[83]  Bertrand Poumellec,et al.  One-step photoinscription of asymmetrically oriented fresnoite-type crystals in glass by ultrafast laser. , 2014, Optics letters.

[85]  R. Taylor,et al.  Applications of femtosecond laser induced self‐organized planar nanocracks inside fused silica glass , 2008 .

[86]  J. Siegel,et al.  Controlling plasma distributions as driving forces for ion migration during fs laser writing , 2014, 1411.6821.

[87]  K Miura,et al.  Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses. , 2000, Optics letters.

[88]  Bertrand Poumellec,et al.  Three-dimensional photoprecipitation of oriented LiNbO3-like crystals in silica-based glass with femtosecond laser irradiation. , 2012, Optics letters.

[89]  Andreas Tünnermann,et al.  Laser induced nanogratings beyond fused silica - periodic nanostructures in borosilicate glasses and ULE™ , 2013 .

[90]  Bertrand Poumellec,et al.  Abnormal elemental redistribution in silicate glasses irradiated by ultrafast laser , 2017 .

[91]  Gerard Mourou,et al.  Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs , 1994 .

[92]  Masaaki Sakakura,et al.  Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses , 2008 .

[93]  Jeremy Allington-Smith,et al.  Ultrafast laser inscription: an enabling technology for astrophotonics. , 2009, Optics express.

[94]  Koji Sugioka,et al.  Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train. , 2011, Optics letters.

[95]  Nadezhda M. Bulgakova,et al.  Theoretical treatments of ultrashort pulse laser processing of transparent materials: toward understanding the volume nanograting formation and “quill” writing effect , 2013 .

[96]  Saulius Juodkazis,et al.  Structural characterization of femtosecond laser modified regions inside sapphire. , 2011, Journal of nanoscience and nanotechnology.

[97]  J. Siegel,et al.  Control of waveguide properties by tuning femtosecond laser induced compositional changes , 2014 .

[98]  Masaaki Sakakura,et al.  Space-selective phase separation inside a glass by controlling compositional distribution with femtosecond-laser irradiation , 2010 .

[99]  Stephen Ho,et al.  Three-dimensional optical sensing network written in fused silica glass with femtosecond laser. , 2008, Optics express.

[100]  Fabio Sciarrino,et al.  Rotated waveplates in integrated waveguide optics , 2014, Nature Communications.

[101]  Z. You,et al.  Fundamentals of phase-only liquid crystal on silicon (LCOS) devices , 2014, Light: Science & Applications.

[102]  K. Miura,et al.  Modification of long range order in germanate glass by ultra fast laser , 2011 .

[103]  Roberto Osellame,et al.  Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator. , 2005, Optics express.

[104]  K. Sun,et al.  FUNDAMENTAL CONDITION OF GLASS FORMATION , 1947 .

[105]  K. Miura,et al.  Ion exchange in glass using femtosecond laser irradiation , 2008 .

[106]  P. Lu,et al.  Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity , 2010 .

[107]  P. Corkum,et al.  High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations , 2005 .

[108]  Leslie Brandon Shaw,et al.  Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials , 2017 .

[109]  E. Mazur,et al.  Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. , 2001, Optics letters.

[110]  Zai-xuan Zhang,et al.  Tm3+/Er3+/Yb3+-codoped oxyhalide tellurite glasses as materials for three-dimensional display , 2005 .

[111]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[112]  Masaaki Sakakura,et al.  Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front. , 2011, Optics express.

[113]  See Leang Chin,et al.  Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm , 2005 .

[114]  Animesh Jha,et al.  Rare-earth ion doped TeO2 and GeO2 glasses as laser materials , 2012 .

[115]  B. Sotillo,et al.  Dual Regimes of Ion Migration in High Repetition Rate Femtosecond Laser Inscribed Waveguides , 2014, IEEE Photonics Technology Letters.

[116]  Giancarlo Ruocco,et al.  Computer generation of optimal holograms for optical trap arrays. , 2007, Optics express.

[117]  C. Lesher Effects of silicate liquid composition on mineral‐liquid element partitioning from Soret diffusion studies , 1986 .

[118]  Kazuyoshi Itoh,et al.  Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement , 2012, Other Conferences.

[119]  Ian Bennion,et al.  Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses. , 2012, Optics express.

[120]  Robert R. Thomson,et al.  Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime , 2006 .

[121]  Koji Sugioka,et al.  Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. , 2003, Optics letters.

[122]  S. Risbud,et al.  Structural changes in fused silica after exposure to focused femtosecond laser pulses. , 2001, Optics letters.

[123]  Masaaki Sakakura,et al.  Condensation of Si-rich region inside soda-lime glass by parallel femtosecond laser irradiation. , 2014, Optics express.

[124]  Gianluca Galzerano,et al.  Diamond photonics platform enabled by femtosecond laser writing , 2016, Scientific Reports.

[125]  E. Mazur,et al.  Bulk heating of transparent materials using a high-repetition-rate femtosecond laser , 2003 .

[126]  E. Mazur,et al.  Ultrafast-laser driven micro-explosions in transparent materials , 1997 .

[127]  Peter G. Kazansky,et al.  ``Quill'' writing with ultrashort light pulses in transparent materials , 2007 .

[128]  Guillaume Petite,et al.  Dynamics of femtosecond laser interactions with dielectrics , 2004 .

[129]  A. Varshneya Fundamentals of Inorganic Glasses , 1993 .

[130]  Jan Siegel,et al.  Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold , 2005 .

[131]  K. Itoh,et al.  Ultrafast Processes for Bulk Modification of Transparent Materials , 2006 .

[132]  Lilia Coronato Courrol,et al.  Color center production by femtosecond pulse laser irradiation in LiF crystals. , 2004, Optics express.

[133]  Yasuhiko Shimotsuma,et al.  Micromodification of element distribution in glass using femtosecond laser irradiation. , 2009, Optics letters.

[134]  Saulius Juodkazis,et al.  Application of femtosecond laser pulses for microfabrication of transparent media , 2002 .

[135]  Masaaki Sakakura,et al.  Control of element distribution in glass with femtosecond laser , 2012, Other Conferences.

[136]  Y. Shimotsuma,et al.  Self-organized nanogratings in glass irradiated by ultrashort light pulses. , 2003, Physical review letters.

[137]  Hang Zhang,et al.  Formation and selective micron-regional control of PbS quantum dots in glasses using femtosecond laser pulsation , 2015 .

[138]  Fumiya Hashimoto,et al.  Time-resolved Micro-Raman Measurement of Temperature Dynamics during High-Repetition-Rate Ultrafast Laser Microprocessing , 2015 .

[139]  Andreas Tünnermann,et al.  Origins of waveguiding in femtosecond laser-structured LiNbO3 , 2007 .

[140]  Masaaki Sakakura,et al.  Formation mechanism of element distribution in glass under femtosecond laser irradiation. , 2011, Optics letters.

[141]  Oleg M. Efimov,et al.  Waveguide writing in chalcogenide glasses by train of femtosecond laser pulses , 2001 .

[142]  K. Sugioka,et al.  Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation. , 2012, Optics express.

[143]  M. Terazima,et al.  Measurement of the triplet lifetime and the quantum yield of triplet formation of phthalazine by the time-resolved thermal lens method , 1987 .

[144]  J. Siegel,et al.  Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass. , 2013, Optics letters.

[145]  Kiyotaka Miura,et al.  Modification of flow of glass melt and elemental distributions by parallel irradiation with femtosecond laser pulses , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[146]  Ramu V. Ramaswamy,et al.  Ion-exchanged glass waveguides: a review , 1988 .

[147]  Masaaki Sakakura,et al.  Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass , 2005 .

[148]  Uwe Morgner,et al.  Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses. , 2004, Optics letters.

[149]  Saulius Juodkazis,et al.  Time-resolved axial-view of the dielectric breakdown under tight focusing in glass , 2011 .

[150]  Fumiyo Yoshino,et al.  Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. , 2005, Optics express.

[151]  R. Terai,et al.  Ionic diffusion in glasses , 1975 .

[152]  M. Lancry,et al.  Modifications in lithium niobium silicate glass by femtosecond laser direct writing: morphology, crystallization, and nanostructure , 2017 .

[153]  N. M. Bulgakova,et al.  Transient response of dielectric materials exposed to ultrafast laser radiation , 2006 .

[154]  J. Solís,et al.  Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm−1 internal gain at 1534 nm , 2013 .

[155]  S. Jackson Towards high-power mid-infrared emission from a fibre laser , 2012, Nature Photonics.

[156]  Jianzhao Li,et al.  5-D spectroscopic microscopy for intelligent femtosecond laser writing of optical waveguides , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[157]  Zhi‐zhan Xu,et al.  Elemental redistribution in glass induced by a 250-kHz femtosecond laser , 2011 .

[158]  Hang Zhang,et al.  Evolution of polarization dependent microstructures induced by high repetition rate femtosecond laser irradiation in glass. , 2016, Optics express.