Metal hardening in atomistic detail

Through millennia humans exploited the natural property of metals to get stronger or hardened when mechanically deformed. Ultimately rooted in the motion of dislocations, mechanisms of metal hardening remained in the crosshairs of physical metallurgists for over a century. Here, we performed atomistic simulations at the limits of supercomputing, which are sufficiently large to be statistically representative of macroscopic crystal plasticity yet fully resolved to examine the origins of metal hardening at its most fundamental level of atomic motion. We demonstrate that the notorious staged (inflection) hardening of metals is a direct consequence of crystal rotation under uniaxial straining. At variance with widely divergent and contradictory views in the literature, we observe that basic mechanisms of dislocation behavior are the same across all stages of metal hardening.

[1]  H. Miers A Treatise on Crystallography , 1900, Nature.

[2]  W. Rosenhain Further Observations on Slip-Bands in Metallic Fractures.--Preliminary Note , 1904, Proceedings of the Royal Society of London.

[3]  H. Mark,et al.  Vorgänge bei der Dehnung von Zinkkristallen , 1923 .

[4]  J. Frenkel Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper , 1926 .

[5]  E. Schmid Beiträge zur Physik und Metallographie des Magnesiums , 1932 .

[6]  M. Polanyi,et al.  Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte , 1934 .

[7]  K. Lücke,et al.  Über die Form der Verfestigungskurve von Reinstaluminiumkristallen und die Bildung von Deformationsbändern , 1952 .

[8]  J. Koehler The Nature of Work-Hardening , 1952 .

[9]  W. Read,et al.  Dislocations in metals , 1954 .

[10]  J. Garstone,et al.  Easy glide of cubic metal crystals , 1956 .

[11]  R. W. Horne,et al.  Direct Observations of the Arrangement and Motion of Dislocations in Aluminium , 1956 .

[12]  J. Koehler,et al.  Electron Microscopy of Aluminum Crystals Deformed at Various Temperatures , 1957 .

[13]  W. Staubwasser Uber die verfestigung von aluminium einkristallen (99,99% Al) und ihre deutung , 1959 .

[14]  W. Hosford,et al.  Tensile deformation of aluminum single crystals at low temperatures , 1960 .

[15]  L. Clarebrough,et al.  The Orientation Dependence of Work-hardening in Crystals of Face-centred Cubic Metals , 1960 .

[16]  D. B. Holt,et al.  The plasticity of pure single crystals , 1964 .

[17]  T. Takeuchi Work Hardening of Copper Single Crystals with Multiple Glide Orientations , 1975 .

[18]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[19]  A. Scharmann Struktur und Eigenschaften der Materie , 1996 .

[20]  E. B. Marin,et al.  On modelling the elasto-viscoplastic response of metals using polycrystal plasticity , 1998 .

[21]  A. Cottrell Commentary. A brief view of work hardening , 2002 .

[22]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[23]  James B. Adams,et al.  Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy , 2004 .

[24]  K. S. Havner On lattice and material-frame rotations and crystal hardening in high-symmetry axial loading , 2005 .

[25]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[26]  Alexander Stukowski,et al.  Extracting dislocations and non-dislocation crystal defects from atomistic simulation data , 2010 .

[27]  Nathan R. Barton,et al.  A polycrystal plasticity model of strain localization in irradiated iron , 2013 .

[28]  Ting Zhu,et al.  Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals , 2013, Nature Communications.

[29]  K. Knowles,et al.  The Directional Dependence of Elastic Stiffness and Compliance Shear Coefficients and Shear Moduli in Cubic Materials , 2015 .

[30]  M. Stricker,et al.  Dislocation multiplication mechanisms – Glissile junctions and their role on the plastic deformation at the microscale , 2015 .

[31]  V. Bulatov,et al.  Dislocation dynamics in hexagonal close-packed crystals , 2016 .

[32]  Vasily V. Bulatov,et al.  Probing the limits of metal plasticity with molecular dynamics simulations , 2017, Nature.

[33]  M. Stricker,et al.  Dislocation multiplication in stage II deformation of fcc multi-slip single crystals , 2018, Journal of the Mechanics and Physics of Solids.

[34]  N. Bertin,et al.  Dislocation Networks and the Microstructural Origin of Strain Hardening. , 2017, Physical review letters.