Optimal band selection from hyperspectral data for Lantana camara discrimination

The primary objective of this research was to determine the optimal hyperspectral wavelengths based on spectroscopy data over the spectral range of 450–2500 nm for the detection of the invasive species Lantana camara L. (lantana) from seven of its co-occurring species. A procedure based on statistical analysis of the reflectance and the first derivative reflectance (FDR) identified 86 and 18 bands, respectively, where lantana significantly differed from its co-occurring species. The effectiveness of the identified optimal bands was then evaluated using Hyperion imagery. The original Hyperion image with 155 bands gave an overall accuracy of 80% compared to 77% and 76% from the 86- and 18-band spectral subsets, respectively. A pairwise comparison of the three error matrices showed no significant difference in the accuracy achieved. The FDR analysis combined with the statistical analysis proved to be a useful procedure for data reduction by refining the discrimination to fewer optimal bands for lantana detection with no adverse impact on classification accuracy.

[1]  M. Zalucki,et al.  Lantana: Current Management Status and Future Prospects , 2003 .

[2]  Francisco J. Artigas,et al.  Spectral discrimination of marsh vegetation types in the New Jersey Meadowlands, USA , 2006, Wetlands.

[3]  Michael D. Steven,et al.  High resolution derivative spectra in remote sensing , 1990 .

[4]  G. Foody Assessing the Accuracy of Remotely Sensed Data: Principles and Practices , 2010 .

[5]  P. Binggeli A taxonomic, biogeographical and ecological overview of invasive woody plants , 1996 .

[6]  J. C. Price How unique are spectral signatures , 1994 .

[7]  R. Congalton,et al.  Accuracy assessment: a user's perspective , 1986 .

[8]  R. G. Oderwald,et al.  Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. , 1983 .

[9]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[10]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[11]  Niklaus E. Zimmermann,et al.  SEASONAL VARIABILITY IN SPECTRAL REFLECTANCE FOR DISCRIMINATING GRASSLANDS ALONG A DRY-MESIC GRADIENT IN SWITZERLAND , 2005 .

[12]  M. Cochrane Using vegetation reflectance variability for species level classification of hyperspectral data , 2000 .

[13]  Milo E. Richmond,et al.  Field Determination of Optimal Dates for the Discrimination of Invasive Wetland Plant Species Using Derivative Spectral Analysis , 2005 .

[14]  Gail P. Anderson,et al.  Analysis of Hyperion data with the FLAASH atmospheric correction algorithm , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[15]  S. Dury,et al.  THE USE OF HYPERSPECTRAL DATA IN COASTAL ZONE VEGETATION MONITORING , 2004 .

[16]  A. Skidmore,et al.  Exploring spectral discrimination of grass species in African rangelands , 2001 .

[17]  D. Simberloff,et al.  BIOTIC INVASIONS: CAUSES, EPIDEMIOLOGY, GLOBAL CONSEQUENCES, AND CONTROL , 2000 .

[18]  Susan L. Ustin,et al.  Spectral and physiological uniqueness of perennial pepperweed (Lepidium latifolium) , 2006, Weed Science.

[19]  P. Curran,et al.  A new technique for interpolating the reflectance red edge position , 1998 .

[20]  Scott J. Goetz Recent advances in remote sensing of biophysical variables , 2002 .

[21]  A. Smith,et al.  Weed–Crop Discrimination Using Remote Sensing: A Detached Leaf Experiment1 , 2003, Weed Technology.

[22]  J. Lumme CLASSIFICATION OF VEGETATION AND SOIL USING IMAGING SPECTROMETER DATA , 2004 .

[23]  M. Ashton,et al.  Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .

[24]  Prasad S. Thenkabail,et al.  Evaluation of Narrowband and Broadband Vegetation Indices for Determining Optimal Hyperspectral Wavebands for Agricultural Crop Characterization , 2002 .

[25]  D. Roberts,et al.  View angle effects on the discrimination of soybean varieties and on the relationships between vegetation indices and yield using off-nadir Hyperion data , 2009 .

[26]  Stephen G. Ungar,et al.  Overview of the Earth Observing One (EO-1) mission , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  Craig S. T. Daughtry,et al.  Spectral Discrimination of Cannabis sativa L. Leaves and Canopies , 1998 .

[28]  Susan L. Ustin,et al.  Mapping Downy Brome (Bromus tectorum) Using Multidate AVIRIS Data , 2008 .

[29]  Jiang Li,et al.  Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction , 2002, IEEE Trans. Geosci. Remote. Sens..

[30]  S. Ustin,et al.  Spectral reflectance characteristics of California subalpine marsh plant communities , 1998, Wetlands.

[31]  Lorenzo Bruzzone,et al.  A new search algorithm for feature selection in hyperspectral remote sensing images , 2001, IEEE Trans. Geosci. Remote. Sens..

[32]  D. Roberts,et al.  Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments , 2001 .

[33]  A. Skidmore,et al.  Spectral discrimination of vegetation types in a coastal wetland , 2003 .

[34]  John Shepanski,et al.  Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[35]  Susan L. Ustin,et al.  Hyperspectral remote sensing for invasive species detection and mapping , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[36]  Jiaguo Qi,et al.  Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second-derivative analysis , 2005 .

[37]  A. Formaggio,et al.  Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data , 2005 .

[38]  Nancy F. Glenn,et al.  A review of remote sensing of invasive weeds and example of the early detection of spotted knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) with a hyperspectral sensor , 2005, Weed Science.

[39]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[40]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[41]  Paul Scheunders,et al.  Band Selection for Hyperspectral Remote Sensing , 2004 .

[42]  T Splajt,et al.  Monitoring of landfill leachate dispersion using reflectance spectroscopy and ground-penetrating radar. , 2003, Environmental science & technology.

[43]  James Woodward,et al.  Biological invasions as global environmental change , 1996 .

[44]  Lloyd L. Coulter,et al.  Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery , 2007 .

[45]  Paul Scheunders,et al.  A band selection technique for spectral classification , 2005, IEEE Geoscience and Remote Sensing Letters.

[46]  Gail P. Anderson,et al.  Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data , 2003, SPIE Defense + Commercial Sensing.

[47]  Mathias Kneubühler,et al.  Application of HYPERION data to agricultural land classification and vegetation properties estimation in Switzerland , 2004 .

[48]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[49]  A. S. Raghubanshi,et al.  Lantana invasion: An overview , 2005 .

[50]  Terence P. Dawson,et al.  Progress in invasive plants research , 2006 .

[51]  Ruiliang Pu,et al.  Conifer species recognition: An exploratory analysis of in situ hyperspectral data , 1997 .

[52]  T. Prather,et al.  Detecting Spotted Knapweed (Centaurea maculosa) with Hyperspectral Remote Sensing Technology1 , 2002, Weed Technology.

[53]  Tim R. McVicar,et al.  Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..