Atmosphere from AARDDVARK Subionospheric VLF Observations

10 Abstract. We analyze observations of subionospherically propagating very low frequency 11

[1]  G. Reeves,et al.  Acceleration and loss of relativistic electrons during small geomagnetic storms , 2015, Geophysical research letters.

[2]  I. Whittaker,et al.  The effects and correction of the geometric factor for the POES/MEPED electron flux instrument using a multisatellite comparison , 2014 .

[3]  Juan V. Rodriguez,et al.  A statistical approach to determining energetic outer radiation belt electron precipitation fluxes , 2014 .

[4]  B. Ni,et al.  Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss , 2013 .

[5]  Craig J. Rodger,et al.  Determining the spectra of radiation belt electron losses: Fitting DEMETER electron flux observations for typical and storm times , 2013 .

[6]  C. Rodger,et al.  Comparison between POES energetic electron precipitation observations and riometer absorptions: Implications for determining true precipitation fluxes , 2013 .

[7]  Xuemin Zhang,et al.  DEMETER observations of high‐latitude chorus waves penetrating the plasmasphere during a geomagnetic storm , 2013 .

[8]  B. Ni,et al.  Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes , 2013 .

[9]  C. Rodger,et al.  Longitudinal hotspots in the mesospheric OH variations due to energetic electron precipitation , 2013 .

[10]  D. Newnham,et al.  The effect of energetic electron precipitation on middle mesospheric night‐time ozone during and after a moderate geomagnetic storm , 2012 .

[11]  S. Saito,et al.  Relativistic electron microbursts associated with whistler chorus rising tone elements: GEMSIS‐RBW simulations , 2012 .

[12]  C. Rodger,et al.  Contrasting the responses of three different ground‐based instruments to energetic electron precipitation , 2012 .

[13]  J. Green,et al.  A Monte Carlo simulation of the NOAA POES Medium Energy Proton and Electron Detector instrument , 2011 .

[14]  J. Kieser,et al.  Atmospheric Ionization Module Osnabrück (AIMOS): 3. Comparison of electron density simulations by AIMOS‐HAMMONIA and incoherent scatter radar measurements , 2011 .

[15]  J. Borovsky,et al.  Energetic electron precipitation during high-speed solar wind stream driven storms , 2011 .

[16]  Sidney W. Wang,et al.  Mesospheric Hydroxyl Response to Electron Precipitation From the Radiation Belts , 2011 .

[17]  P. Jöckel,et al.  Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index , 2010 .

[18]  R. J. Gamble,et al.  Ground‐based estimates of outer radiation belt energetic electron precipitation fluxes into the atmosphere , 2010 .

[19]  Josef Koller,et al.  Dropouts of the outer electron radiation belt in response to solar wind stream interfaces: global positioning system observations , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Richard M. Thorne,et al.  Radiation belt dynamics: The importance of wave‐particle interactions , 2010 .

[21]  R. J. Gamble,et al.  Radiation belt electron precipitation due to geomagnetic storms: Significance to middle atmosphere ozone chemistry , 2010 .

[22]  C. Russell,et al.  How unprecedented a solar minimum was it? , 2010, Journal of advanced research.

[23]  M. J. Birch,et al.  On the fine structure of medium energy electron fluxes in the auroral zone and related effects in the ionospheric D-region , 2010 .

[24]  T. Moffat‐Griffin,et al.  Origin of energetic electron precipitation >30 keV into the atmosphere , 2010 .

[25]  A. Chan,et al.  New Directions for Radiation Belt Research , 2009 .

[26]  J. Tamminen,et al.  Impact of different energies of precipitating particles on NOx generation in the middle and upper atmosphere during geomagnetic storms , 2009 .

[27]  C. Rodger,et al.  NOx enhancements in the middle atmosphere during 2003–2004 polar winter: Relative significance of solar proton events and the aurora as a source , 2007 .

[28]  R. Thorne,et al.  Review of radiation belt relativistic electron losses , 2007 .

[29]  J. Tamminen,et al.  Destruction of the tertiary ozone maximum during a solar proton event , 2006 .

[30]  M. Jarvis,et al.  Dynamic geomagnetic rigidity cutoff variations during a solar proton event , 2006 .

[31]  M. Schlesinger,et al.  Atmospheric response to NOy source due to energetic electron precipitation , 2005 .

[32]  R. Horne,et al.  Resonant diffusion of radiation belt electrons by whistler‐mode chorus , 2003 .

[33]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[34]  M. Parrot,et al.  The micro-satellite DEMETER , 2002 .

[35]  K. R. Lorentzen,et al.  Observations of relativistic electron microbursts in association with VLF chorus , 2001 .

[36]  Alan D. Lopez,et al.  First evidence of Ωc0→Ω−π+ , 1993 .

[37]  G. Drevin,et al.  Riometer quiet day curves determined by the maximum density method , 1990 .

[38]  M. Rees Physics and Chemistry of the Upper Atmosphere , 1989 .

[39]  R. A. Goldberg,et al.  Nighttime auroral energy deposition in the middle atmosphere , 1984 .

[40]  G. L. Hower,et al.  Riometer quiet day curves , 1967 .

[41]  Xinlin Li,et al.  The Electron Radiation Belt , 2001 .