Influence of pentavalent dopant addition to polarization and bioactivity of hydroxyapatite.

[1]  V. Hasırcı,et al.  Collagen scaffolds with in situ‐grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells , 2012, Journal of tissue engineering and regenerative medicine.

[2]  A. Bandyopadhyay,et al.  Understanding bioactivity and polarizability of hydroxyapatite doped with tungsten. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[3]  R. Snyders,et al.  Tantalum-doped hydroxyapatite thin films: Synthesis and characterization , 2012 .

[4]  S. Spriano,et al.  Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement , 2012 .

[5]  A. Bandyopadhyay,et al.  Bone cell–material interactions on metal-ion doped polarized hydroxyapatite , 2011 .

[6]  A. Bandyopadhyay,et al.  Effect of electrical polarization and composition of biphasic calcium phosphates on early stage osteoblast interactions. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.

[7]  A. Bandyopadhyay,et al.  Influence of MgO, SrO, and ZnO Dopants on Electro-Thermal Polarization Behavior and In Vitro Biological Properties of Hydroxyapatite Ceramics , 2011 .

[8]  A. Bandyopadhyay,et al.  Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics. , 2010, Acta biomaterialia.

[9]  K. Yamashita,et al.  Electrical Polarization of β‐Tricalcium Phosphate Ceramics , 2010 .

[10]  Vamsi Krishna Balla,et al.  Tantalum—A bioactive metal for implants , 2010 .

[11]  A. Bandyopadhyay,et al.  Electrically polarized HAp-coated Ti: in vitro bone cell-material interactions. , 2010, Acta biomaterialia.

[12]  K. Yamashita,et al.  Polarization and microstructural effects of ceramic hydroxyapatite electrets , 2010 .

[13]  K. Yamashita,et al.  Surface electric fields increase osteoblast adhesion through improved wettability on hydroxyapatite electret. , 2009, ACS applied materials & interfaces.

[14]  A. Bandyopadhyay,et al.  Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. , 2009, Acta biomaterialia.

[15]  Sarah L. Sewell,et al.  Materials Science and Engineering C , 2009 .

[16]  M Fini,et al.  Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. , 2008, Acta biomaterialia.

[17]  S. Kalita,et al.  Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization , 2007 .

[18]  G. Rosenman,et al.  Charge-induced wettability modification , 2007 .

[19]  J. Ferreira,et al.  Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. , 2007, Acta biomaterialia.

[20]  A. Bandyopadhyay,et al.  Influence of ZnO doping in calcium phosphate ceramics , 2007 .

[21]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[22]  Ahmed El-Ghannam,et al.  Bone reconstruction: from bioceramics to tissue engineering , 2005, Expert review of medical devices.

[23]  T. Webster,et al.  Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. , 2004, Biomaterials.

[24]  M. Traisnel,et al.  Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. , 2004, Journal of biomedical materials research. Part A.

[25]  M. Vallet‐Regí,et al.  Calcium phosphates as substitution of bone tissues , 2004 .

[26]  H.-M. Kim,et al.  Ceramic bioactivity and related biomimetic strategy , 2003 .

[27]  S. Best,et al.  Structural analysis of Si-substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy , 2002, Journal of materials science. Materials in medicine.

[28]  T. Webster,et al.  Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. , 2002, Journal of biomedical materials research.

[29]  H. Takeda,et al.  Evaluation of electrical polarizability and in vitro bioactivity of apatite Sr5(PO4)3OH dense ceramics , 2002 .

[30]  S. Nakamura,et al.  Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. , 2001, Journal of biomedical materials research.

[31]  K. Yamashita,et al.  Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite. , 2001, Journal of biomedical materials research.

[32]  K. Khor,et al.  RF plasma processing of ultra-fine hydroxyaptite powders , 2001 .

[33]  H. Takeda,et al.  Proton transport polarization and depolarization of hydroxyapatite ceramics , 2001 .

[34]  T. Webster,et al.  Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. , 2000, Journal of biomedical materials research.

[35]  J. Tanaka,et al.  Apatite formation on organic monolayers in simulated body environment. , 2000, Journal of biomedical materials research.

[36]  P Ducheyne,et al.  Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. , 1999, Biomaterials.

[37]  A. P. Serro,et al.  Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites. , 1999, Journal of biomedical materials research.

[38]  N. Kolthoff,et al.  Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. , 1997, Bone.

[39]  K. Yamashita,et al.  Acceleration and Deceleration of Bone-Like Crystal Growth on Ceramic Hydroxyapatite by Electric Poling , 1996 .

[40]  U. Joos,et al.  Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. , 1993, Journal of biomedical materials research.

[41]  G. C. Maiti,et al.  Influence of fluorine substitution on the proton conductivity of hydroxyapatite , 1981 .

[42]  R. Mason Progress in Solid State Chemistry Vol 6 , 1973 .

[43]  R. Fieschi,et al.  Ionic Thermocurrents in Dielectrics , 1966 .

[44]  R. J. Pawluk,et al.  Effects of Electric Currents on Bone In Vivo , 1964, Nature.

[45]  C. Andrew L. Bassett,et al.  Generation of Electric Potentials by Bone in Response to Mechanical Stress , 1962, Science.