Functional Magnetic Resonance Imaging of the Spinal Cord: Current Status and Future Developments.

Although functional magnetic resonance imaging has become popular for brain imaging, it is still difficult to apply this technique to the spinal cord because of complex issues related to the physiology of the spinal cord and technical challenges related to magnetic resonance imaging hardware, pulse sequences, and image processing techniques. In this article, we examine these key aspects and discuss their present status, unresolved issues, and future directions.

[1]  Julien Cohen-Adad,et al.  Robust, accurate and fast automatic segmentation of the spinal cord , 2014, NeuroImage.

[2]  A. Gjedde,et al.  Reduction of Functional Capillary Density in Human Brain after Stroke , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[3]  Gian Domenico Iannetti,et al.  Behavioral/systems/cognitive Functional Responses in the Human Spinal Cord during Willed Motor Actions: Evidence for Side-and Rate-dependent Activity , 2022 .

[4]  J. Pauly,et al.  Isotropic diffusion‐weighted and spiral‐navigated interleaved EPI for routine imaging of acute stroke , 1997, Magnetic resonance in medicine.

[5]  B. Rosen,et al.  7‐T MRI of the spinal cord can detect lateral corticospinal tract abnormality in amyotrophic lateral sclerosis , 2013, Muscle & nerve.

[6]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[7]  Luke Bloy,et al.  Spatial sensitivity and temporal response of spin echo and gradient echo bold contrast at 3 T using peak hemodynamic activation time , 2005, NeuroImage.

[8]  Julien Cohen-Adad,et al.  Automatic Labeling of Vertebral Levels Using a Robust Template-Based Approach , 2014, Int. J. Biomed. Imaging.

[9]  Julien Cohen-Adad,et al.  Investigations on spinal cord fMRI of cats under ketamine , 2009, NeuroImage.

[10]  R. S. Hinks,et al.  Real‐time shimming to compensate for respiration‐induced B0 fluctuations , 2007, Magnetic resonance in medicine.

[11]  J. Gore,et al.  Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis at 7T , 2016, Multiple sclerosis.

[12]  Robert L Barry,et al.  Resting state functional connectivity in the human spinal cord , 2014, eLife.

[13]  Julien Cohen-Adad,et al.  Simultaneous Brain–Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning , 2015, PLoS biology.

[14]  A. Berenstein,et al.  Clinical Vascular Anatomy and Variations , 2001 .

[15]  Fuqiang Zhao,et al.  BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation , 2008, NeuroImage.

[16]  Robert Turner,et al.  How Much Cortex Can a Vein Drain? Downstream Dilution of Activation-Related Cerebral Blood Oxygenation Changes , 2002, NeuroImage.

[17]  Katsushige Sato,et al.  Optical Imaging of Intrinsic Signals Induced by Peripheral Nerve Stimulation in the in Vivo Rat Spinal Cord , 2002, NeuroImage.

[18]  Seth A. Smith,et al.  Groupwise multi-atlas segmentation of the spinal cord's internal structure , 2014, Medical Image Anal..

[19]  Robin M Heidemann,et al.  High resolution diffusion‐weighted imaging using readout‐segmented echo‐planar imaging, parallel imaging and a two‐dimensional navigator‐based reacquisition , 2009, Magnetic resonance in medicine.

[20]  Julien Cohen-Adad,et al.  BOLD signal responses to controlled hypercapnia in human spinal cord , 2010, NeuroImage.

[21]  W. Backes,et al.  Functional MR imaging of the cervical spinal cord by use of median nerve stimulation and fist clenching. , 2001, AJNR. American journal of neuroradiology.

[22]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[23]  D. Mikulis,et al.  Characterizing the Location of Spinal and Vertebral Levels in the Human Cervical Spinal Cord , 2015, American Journal of Neuroradiology.

[24]  M. Sdika,et al.  Construction of an in vivo human spinal cord atlas based on high-resolution MR images at cervical and thoracic levels: preliminary results , 2014, Magnetic Resonance Materials in Physics, Biology and Medicine.

[25]  Julien Cohen-Adad,et al.  7T MRI of spinal cord injury , 2012, Neurology.

[26]  Christoph Juchem,et al.  Dynamic Shimming of the Human Brain at 7 Tesla. , 2010, Concepts in magnetic resonance. Part B, Magnetic resonance engineering.

[27]  David H. Miller,et al.  Contiguous‐slice zonally oblique multislice (CO‐ZOOM) diffusion tensor imaging: Examples of in vivo spinal cord and optic nerve applications , 2009, Journal of magnetic resonance imaging : JMRI.

[28]  Christian Büchel,et al.  Spinal Cord–Midbrain Functional Connectivity Is Related to Perceived Pain Intensity: A Combined Spino-Cortical fMRI Study , 2015, The Journal of Neuroscience.

[29]  K. Uğurbil,et al.  Experimental determination of the BOLD field strength dependence in vessels and tissue , 1997, Magnetic resonance in medicine.

[30]  J. Ehrhardt,et al.  Regulation of total and regional spinal cord blood flow. , 1977, Acta neurologica Scandinavica. Supplementum.

[31]  Hoby P Hetherington,et al.  Role of very high order and degree B0 shimming for spectroscopic imaging of the human brain at 7 tesla , 2012, Magnetic resonance in medicine.

[32]  Ping Wang,et al.  Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: Insights into hemodynamic regulation , 2006, NeuroImage.

[33]  Julien Cohen-Adad,et al.  Spinal Cord fMRI , 2014 .

[34]  Chunlei Liu Susceptibility tensor imaging , 2010, Magnetic resonance in medicine.

[35]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Jürgen Finsterbusch,et al.  B0 Inhomogeneity and Shimming , 2014 .

[37]  Roel H. R. Deckers,et al.  Quantifying the spatial resolution of the gradient echo and spin echo BOLD response at 3 Tesla , 2005, Magnetic resonance in medicine.

[38]  Matthias F. Mueller,et al.  Parallel magnetic resonance imaging using the GRAPPA operator formalism , 2005, Magnetic resonance in medicine.

[39]  W. Erdmann,et al.  Comparison of Vascular Reactivity in Spinal Cord and Brain , 1976, Stroke.

[40]  M. Piché,et al.  Modulation of somatosensory‐evoked cortical blood flow changes by GABAergic inhibition of the nucleus basalis of Meynert in urethane‐anaesthetized rats , 2010, The Journal of physiology.

[41]  Julien Cohen-Adad,et al.  Automatic Segmentation of the Spinal Cord and Spinal Canal Coupled With Vertebral Labeling , 2015, IEEE Transactions on Medical Imaging.

[42]  Lawrence L. Wald,et al.  A 32‐channel combined RF and B0 shim array for 3T brain imaging , 2016, Magnetic resonance in medicine.

[43]  Christian Büchel,et al.  Combined T2*-weighted measurements of the human brain and cervical spinal cord with a dynamic shim update , 2013, NeuroImage.

[44]  Julien Cohen-Adad,et al.  The current state-of-the-art of spinal cord imaging: Methods , 2014, NeuroImage.

[45]  J. Helpern,et al.  High‐resolution human cervical spinal cord imaging at 7 T , 2012, NMR in biomedicine.

[46]  Christian Büchel,et al.  Single, slice-specific z-shim gradient pulses improve T2*-weighted imaging of the spinal cord , 2012, NeuroImage.

[47]  P. Boesiger,et al.  Reduced field‐of‐view MRI using outer volume suppression for spinal cord diffusion imaging , 2007, Magnetic resonance in medicine.

[48]  Jeffrey L Duerk,et al.  Functional magnetic resonance imaging of the human lumbar spinal cord , 2005, Journal of magnetic resonance imaging : JMRI.

[49]  D. Nair About being BOLD , 2005, Brain Research Reviews.

[50]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[51]  Peter Boesiger,et al.  Electrocardiogram‐triggered, higher order, projection‐based B0 shimming allows for fast and reproducible shim convergence in spinal cord 1H MRS , 2013, NMR in biomedicine.

[52]  Peter A. Bandettini,et al.  From neuron to BOLD: new connections , 2001, Nature Neuroscience.

[53]  Marcus E. Raichle,et al.  Cognitive neuroscience: Bold insights , 2001, Nature.

[54]  J. Polimeni,et al.  32‐Channel RF coil optimized for brain and cervical spinal cord at 3 T , 2011, Magnetic resonance in medicine.

[55]  Richard D. Dortch,et al.  Ultra-High Field Spinal Cord Imaging , 2014 .

[56]  Julien Cohen-Adad,et al.  Effect of respiration on the B0 field in the human spinal cord at 3T , 2014, Magnetic resonance in medicine.

[57]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Johan Michiels,et al.  Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible? , 2006, Neuroradiology.

[59]  Julien Cohen-Adad,et al.  White matter atlas of the human spinal cord with estimation of partial volume effect , 2015, NeuroImage.

[60]  P. Starewicz,et al.  A 24‐channel shim array for the human spinal cord: Design, evaluation, and application , 2016, Magnetic resonance in medicine.

[61]  G. Crelier,et al.  Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Mintun,et al.  Nonoxidative glucose consumption during focal physiologic neural activity. , 1988, Science.

[63]  Benjamin N. Conrad,et al.  Reproducibility of resting state spinal cord networks in healthy volunteers at 7 Tesla , 2016, NeuroImage.

[64]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[65]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[66]  D. Heeger,et al.  In this issue , 2002, Nature Reviews Drug Discovery.

[67]  Jürgen Finsterbusch,et al.  Functional neuroimaging of inner fields-of-view with 2D-selective RF excitations. , 2013, Magnetic resonance imaging.