A STATISTICAL OUTLOOK ON THE PROBLEM OF SEISMIC NETWORK CONFIGURATION

We examine the problem of optimal seismic network configuration. We apply ideas from the statistical literature on optimal experimental design and influential observations. We review several different criteria that have appeared in the literature and propose a new criterion based on equalizing arrival time importance. All the configuration criteria achieve networks that improve the resolution for determining hypocenters. Our new criterion enhances the robustness of the network to outlying observations at the expense of a slight reduction in resolution. The network configuration problem has taken on special importance in the context of monitoring the Comprehensive Nuclear Test Ban Treaty (CTBT) and we discuss the application of the configuration criteria to CTBT monitoring and to on site inspection search areas.

[1]  Yochai Ben Horin,et al.  Optimal Seismic Networks in Israel in the Context of the Comprehensive Test Ban Treaty , 2000 .

[2]  Nitzan Rabinowitz,et al.  On identifying influential arrivals by means of density information matrix , 1986 .

[3]  David M. Steinberg,et al.  Configuring a seismographic network for optimal monitoring of fault lines and multiple sources , 1995, Bulletin of the Seismological Society of America.

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Andrzej Kijko,et al.  An algorithm for the optimum distribution of a regional seismic network—I , 1977 .

[6]  R. Cook Detection of influential observation in linear regression , 2000 .

[7]  Andrew Curtis,et al.  Optimal design of focused experiments and surveys , 1999 .

[8]  T. Francis,et al.  Hypocentral resolution of small ocean bottom seismic networks , 1978 .

[9]  E. A. Flinn,et al.  Confidence regions and error determinations for seismic event location , 1965 .

[10]  Jack F. Evernden,et al.  Precision of epicenters obtained by small numbers of world-wide stations , 1969 .

[11]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[12]  Ray Buland,et al.  The mechanics of locating earthquakes , 1976, Bulletin of the Seismological Society of America.

[13]  W. Näther Optimum experimental designs , 1994 .

[14]  A. Atkinson The Usefulness of Optimum Experimental Designs , 1996 .

[15]  David C. Peters,et al.  Application of prediction analysis to hypocenter determination using a local array , 1972, Bulletin of the Seismological Society of America.

[16]  T. C. Bache,et al.  Locating events with a sparse network of regional arrays , 1988 .

[17]  Robert B. Davies,et al.  The effect of errors in the independent variables in linear regression , 1975 .

[18]  H. L. Lucas,et al.  DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS , 1959 .

[19]  David M. Steinberg,et al.  Effect of single arrival time on the hypocentral focal depth determination , 1988 .

[20]  Robert A. Uhrhammer,et al.  Analysis of small seismographic station networks , 1980 .

[21]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[22]  Joan S. Gomberg,et al.  The effect of S-wave arrival times on the accuracy of hypocenter estimation , 1990, Bulletin of the Seismological Society of America.

[23]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[24]  Thomas H. Jordan,et al.  Teleseismic location techniques and their application to earthquake clusters in the South-Central Pacific , 1981 .

[25]  David M. Steinberg,et al.  Optimal configuration of a seismographic network: A statistical approach , 1990, Bulletin of the Seismological Society of America.

[26]  A. Curtis Optimal experiment design: cross-borehole tomographic examples , 1999 .

[27]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[28]  D. V. Gokhale,et al.  A Survey of Statistical Design and Linear Models. , 1976 .