Nodal domain statistics for quantum maps, percolation, and stochastic Loewner evolution.
暂无分享,去创建一个
[1] Experimental investigation of nodal domains in the chaotic microwave rough billiard. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] J. Keating. The cat maps: quantum mechanics and classical motion , 1991 .
[3] John Cardy. SLE for theoretical physicists , 2005 .
[4] Michael V Berry,et al. Regular and irregular semiclassical wavefunctions , 1977 .
[5] The morphology of nodal lines-random waves versus percolation , 2004, nlin/0407012.
[6] A. B. Harris,et al. Effect of random defects on the critical behaviour of Ising models , 1974 .
[7] Francesco Mezzadri,et al. Nodal domain distributions for quantum maps , 2002, nlin/0212008.
[8] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .
[9] John Cardy. Critical percolation in finite geometries , 1992 .
[10] F. Mezzadri,et al. Quantum boundary conditions for torus maps , 1999 .
[11] Ericka Stricklin-Parker,et al. Ann , 2005 .
[12] Uzy Smilansky,et al. Nodal domains statistics: a criterion for quantum chaos. , 2001, Physical review letters.
[13] A. Celani,et al. Conformal invariance in two-dimensional turbulence , 2006, nlin/0602017.
[14] Il,et al. Universality of Finite-Size Corrections to the Number of Critical Percolation Clusters , 1997, cond-mat/9707168.
[15] M. Berry,et al. Quantization of linear maps on a torus-fresnel diffraction by a periodic grating , 1980 .
[16] O. Bohigas,et al. Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .
[17] The distribution of extremal points of Gaussian scalar fields , 2003, math-ph/0301041.
[18] E. Bogomolny,et al. Percolation model for nodal domains of chaotic wave functions. , 2001, Physical review letters.