Lateralization of ventral and dorsal auditory-language pathways in the human brain

Recent electrophysiological investigations of the auditory system in primates along with functional neuroimaging studies of auditory perception in humans have suggested there are two pathways arising from the primary auditory cortex. In the primate brain, a 'ventral' pathway is thought to project anteriorly from the primary auditory cortex to prefrontal areas along the superior temporal gyrus while a separate 'dorsal' route connects these areas posteriorly via the inferior parietal lobe. We use diffusion MRI tractography, a noninvasive technique based on diffusion-weighted MRI, to investigate the possibility of a similar pattern of connectivity in the human brain for the first time. The dorsal pathway from Wernicke's area to Broca's area is shown to include the arcuate fasciculus and connectivity to Brodmann area 40, lateral superior temporal gyrus (LSTG), and lateral middle temporal gyrus. A ventral route between Wernicke's area and Broca's area is demonstrated that connects via the external capsule/uncinate fasciculus and the medial superior temporal gyrus. Ventral connections are also observed in the lateral superior and middle temporal gyri. The connections are stronger in the dominant hemisphere, in agreement with previous studies of functional lateralization of auditory-language processing.

[1]  D. Poeppel,et al.  Towards a functional neuroanatomy of speech perception , 2000, Trends in Cognitive Sciences.

[2]  S. Scott,et al.  Identification of a pathway for intelligible speech in the left temporal lobe. , 2000, Brain : a journal of neurology.

[3]  P. Basser,et al.  Water Diffusion Changes in Wallerian Degeneration and Their Dependence on White Matter Architecture , 2000 .

[4]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[5]  J. Rademacher,et al.  Stereotaxic Localization, Intersubject Variability, and Interhemispheric Differences of the Human Auditory Thalamocortical System , 2002, NeuroImage.

[6]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[7]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[8]  Patricia S. Goldman-Rakic,et al.  Reply to '‘What’, ‘where’ and ‘how’ in auditory cortex' , 2000, Nature Neuroscience.

[9]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[10]  Daniel C. Alexander,et al.  Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information , 2003, IPMI.

[11]  Jon H. Kaas,et al.  'What' and 'where' processing in auditory cortex , 1999, Nature Neuroscience.

[12]  R. Zatorre,et al.  ‘What’, ‘where’ and ‘how’ in auditory cortex , 2000, Nature Neuroscience.

[13]  Brian MacWhinney,et al.  The emergence of language. , 1999 .

[14]  M. Preul The Human Brain: Surface, Blood Supply, and Three-Dimensional Sectional Anatomy , 2001 .

[15]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[16]  Jesús Pujol,et al.  The Lateral Asymmetry of the Human Brain Studied by Volumetric Magnetic Resonance Imaging , 2002, NeuroImage.

[17]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[18]  R J Wise,et al.  Separate neural subsystems within 'Wernicke's area'. , 2001, Brain : a journal of neurology.

[19]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[20]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[21]  Karl J. Friston,et al.  A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains , 2001, NeuroImage.

[22]  J. Rauschecker Cortical processing of complex sounds , 1998, Current Opinion in Neurobiology.

[23]  Federico Turkheimer,et al.  Speech production after stroke: The role of the right pars opercularis , 2003, Annals of neurology.

[24]  Gareth J. Barker,et al.  Diffusion tractography based group mapping of major white-matter pathways in the human brain , 2003, NeuroImage.

[25]  S. Scott,et al.  A physiological change in the homotopic cortex following left posterior temporal lobe infarction , 2002, Annals of neurology.

[26]  A. Benton,et al.  On Aphasia , 1874, British medical journal.

[27]  J. Guérit,et al.  The temporal lobe and the limbic system, P. Gloor (Ed.). Oxford University Press (1997), 865 , 2000 .

[28]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[29]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[30]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[31]  Guy M. McKhann,et al.  Non-invasive Mapping of Connections Between Human Thalamus and Cortex Using Diffusion Imaging , 2004 .

[32]  R. Wise,et al.  Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. , 2003, British medical bulletin.

[33]  J. Rademacher,et al.  Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. , 2001, Brain : a journal of neurology.

[34]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[35]  John S. Duncan,et al.  Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo , 2003, NeuroImage.

[36]  D. Parker,et al.  Analysis of partial volume effects in diffusion‐tensor MRI , 2001, Magnetic resonance in medicine.

[37]  D.L. Plummer,et al.  DispImage: Un mezzo di analisi e presentazione per iconografia medica , 1992 .

[38]  A. Schleicher,et al.  Mapping of Histologically Identified Long Fiber Tracts in Human Cerebral Hemispheres to the MRI Volume of a Reference Brain: Position and Spatial Variability of the Optic Radiation , 1999, NeuroImage.

[39]  A. Toga,et al.  Mapping brain asymmetry , 2003, Nature Reviews Neuroscience.

[40]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[41]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. David,et al.  The planum temporale: a systematic, quantitative review of its structural, functional and clinical significance , 1999, Brain Research Reviews.

[43]  J. Dejerine Sémiologie des affections du système nerveux , 1915 .