Random simplicial complexes - around the phase transition

This article surveys some of the work done in recent years on random simplicial complexes. We mostly consider higher-dimensional analogs of the well known phase transition in G(n, p) theory that occurs at \(p = \frac{1} {n}\). Our main objective is to provide a more streamlined and unified perspective of some of the papers in this area.

[1]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[2]  M. Reed,et al.  Methods of Mathematical Physics , 1980 .

[3]  D. Aldous The ζ(2) limit in the random assignment problem , 2000, Random Struct. Algorithms.

[4]  O. Cohen Recurrence of Distributional Limits of Finite Planar Graphs , 2000 .

[5]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[6]  Michael Molloy,et al.  Cores in random hypergraphs and Boolean formulas , 2005, Random Struct. Algorithms.

[7]  Russell Lyons Asymptotic Enumeration of Spanning Trees , 2005, Comb. Probab. Comput..

[8]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[9]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[10]  Matthew Kahle,et al.  The fundamental group of random 2-complexes , 2007, 0711.2704.

[11]  Oliver Riordan,et al.  The k-Core and Branching Processes , 2005, Combinatorics, Probability and Computing.

[12]  N. Wallach,et al.  Homological connectivity of random k-dimensional complexes , 2009 .

[13]  R. Meshulam,et al.  Homological connectivity of random k-dimensional complexes , 2009, Random Struct. Algorithms.

[14]  Marc Lelarge,et al.  The rank of diluted random graphs. , 2009, 0907.4244.

[15]  Nathan Linial,et al.  Collapsibility and Vanishing of Top Homology in Random Simplicial Complexes , 2010, Discret. Comput. Geom..

[16]  Nathan Linial,et al.  On the phase transition in random simplicial complexes , 2014, 1410.1281.

[17]  Ilan Newman,et al.  Extremal problems on shadows and hypercuts in simplicial complexes , 2014 .

[18]  Nathan Linial,et al.  When does the top homology of a random simplicial complex vanish? , 2012, Random Struct. Algorithms.

[19]  Benny Sudakov,et al.  A random triadic process , 2015, Electron. Notes Discret. Math..

[20]  Nathan Linial,et al.  The threshold for d‐collapsibility in random complexes* , 2013, Random Struct. Algorithms.

[21]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[22]  Matthew Kahle,et al.  The Threshold for Integer Homology in Random d-Complexes , 2013, Discret. Comput. Geom..

[23]  Tomasz Luczak,et al.  Integral Homology of Random Simplicial Complexes , 2016, Discret. Comput. Geom..