p ‐Selmer growth in extensions of degree p

There is a known analogy between growth questions for class groups and for Selmer groups. If $p$ is a prime, then the $p$-torsion of the ideal class group grows unboundedly in $\mathbb{Z}/p\mathbb{Z}$-extensions of a fixed number field $K$, so one expects the same for the $p$-Selmer group of a nonzero abelian variety over $K$. This Selmer group analogue is known in special cases and we prove it in general, along with a version for arbitrary global fields.

[1]  R. Bölling Die Ordnung der Schafarewitsch‐Tate‐Gruppe kann beliebig groß werden , 1975 .

[2]  S. Lichtenbaum,et al.  THE PERIOD-INDEX PROBLEM FOR ELLIPTIC CURVES. , 1968 .

[3]  Kazuo Matsuno Construction of elliptic curves with large Iwasawa $${\lambda}$$ -invariants and large Tate-Shafarevich groups , 2007 .

[4]  J. Brau Selmer groups of elliptic curves in degree $p$ extensions , 2014, 1401.3304.

[5]  S. Shatz Cohomology of Artinian Group Schemes Over Local Fields , 1964 .

[6]  Kęstutis Česnavičius TOPOLOGY ON COHOMOLOGY OF LOCAL FIELDS , 2014, Forum of Mathematics, Sigma.

[7]  E. Hewitt,et al.  Abstract Harmonic Analysis , 1963 .

[8]  J. Coates,et al.  Galois Cohomology of Elliptic Curves , 2000 .

[9]  Stephen S. Shatz,et al.  Profinite Groups, Arithmetic, and Geometry. , 1972 .

[10]  Kazuo Matsuno Elliptic curves with large Tate-Shafarevich groups over a number field , 2009 .

[11]  Tadao Oda,et al.  The first de Rham cohomology group and Dieudonné modules , 1969 .

[12]  K. Kramer A family of semistable elliptic curves with large Tate-Shafarevitch groups , 1983 .

[13]  S. Shatz Profinite Groups, Arithmetic, and Geometry. (AM-67), Volume 67 , 1972 .

[14]  J. Cassels Arithmetic on Curves of genus 1. VI. The Tate-Safarevic group can be arbitrarily large. , 1964 .

[15]  T. Fisher Some examples of 5 and 7 descent for elliptic curves over Q , 2001 .

[16]  A. Grothendieck Exemples et Complements , 1971 .

[17]  K. Hoechsmann,et al.  Products in sheaf-cohomology , 1970 .

[18]  Kęstutis Česnavičius The ℓ-parity conjecture over the constant quadratic extension , 2014, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  P. L. Clark,et al.  Period, index and potential, III , 2008, 0811.3019.

[20]  Cristian D. González-Avilés Arithmetic duality theorems for 1-motives over function fields , 2007, 0709.4255.

[21]  Brendan Creutz Potential ? for abelian varieties , 2010, 1010.3349.

[22]  Kęstutis Česnavičius Selmer groups as flat cohomology groups , 2013, 1301.4724.

[23]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[24]  Selmer groups of elliptic curves that can be arbitrarily large , 2003 .

[25]  Kęstutis Česnavičius Selmer groups and class groups , 2013, Compositio Mathematica.

[26]  Large Selmer groups over number fields , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  The period-index problem in WC-groups II: abelian varieties , 2004, math/0406135.

[28]  Armand Borel,et al.  Seminar on complex multiplication : seminar held at the Institute for Advanced Study, Princeton, N.J., 1957-58 : [papers] , 1966 .

[29]  P. L. Clark,et al.  There are genus one curves of every index over every infinite, finitely generated field , 2014, Journal für die reine und angewandte Mathematik (Crelles Journal).

[30]  Matthias Durr,et al.  Cohomology Of Number Fields , 2016 .

[31]  M. Madan Class groups of global fields. , 1972 .

[32]  Bertrand Toën Descente fidèlement plate pour les n-champs d’Artin , 2011, Compositio Mathematica.