p ‐Selmer growth in extensions of degree p
暂无分享,去创建一个
[1] R. Bölling. Die Ordnung der Schafarewitsch‐Tate‐Gruppe kann beliebig groß werden , 1975 .
[2] S. Lichtenbaum,et al. THE PERIOD-INDEX PROBLEM FOR ELLIPTIC CURVES. , 1968 .
[3] Kazuo Matsuno. Construction of elliptic curves with large Iwasawa $${\lambda}$$ -invariants and large Tate-Shafarevich groups , 2007 .
[4] J. Brau. Selmer groups of elliptic curves in degree $p$ extensions , 2014, 1401.3304.
[5] S. Shatz. Cohomology of Artinian Group Schemes Over Local Fields , 1964 .
[6] Kęstutis Česnavičius. TOPOLOGY ON COHOMOLOGY OF LOCAL FIELDS , 2014, Forum of Mathematics, Sigma.
[7] E. Hewitt,et al. Abstract Harmonic Analysis , 1963 .
[8] J. Coates,et al. Galois Cohomology of Elliptic Curves , 2000 .
[9] Stephen S. Shatz,et al. Profinite Groups, Arithmetic, and Geometry. , 1972 .
[10] Kazuo Matsuno. Elliptic curves with large Tate-Shafarevich groups over a number field , 2009 .
[11] Tadao Oda,et al. The first de Rham cohomology group and Dieudonné modules , 1969 .
[12] K. Kramer. A family of semistable elliptic curves with large Tate-Shafarevitch groups , 1983 .
[13] S. Shatz. Profinite Groups, Arithmetic, and Geometry. (AM-67), Volume 67 , 1972 .
[14] J. Cassels. Arithmetic on Curves of genus 1. VI. The Tate-Safarevic group can be arbitrarily large. , 1964 .
[15] T. Fisher. Some examples of 5 and 7 descent for elliptic curves over Q , 2001 .
[16] A. Grothendieck. Exemples et Complements , 1971 .
[17] K. Hoechsmann,et al. Products in sheaf-cohomology , 1970 .
[18] Kęstutis Česnavičius. The ℓ-parity conjecture over the constant quadratic extension , 2014, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] P. L. Clark,et al. Period, index and potential, III , 2008, 0811.3019.
[20] Cristian D. González-Avilés. Arithmetic duality theorems for 1-motives over function fields , 2007, 0709.4255.
[21] Brendan Creutz. Potential ? for abelian varieties , 2010, 1010.3349.
[22] Kęstutis Česnavičius. Selmer groups as flat cohomology groups , 2013, 1301.4724.
[23] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[24] Selmer groups of elliptic curves that can be arbitrarily large , 2003 .
[25] Kęstutis Česnavičius. Selmer groups and class groups , 2013, Compositio Mathematica.
[26] Large Selmer groups over number fields , 2008, Mathematical Proceedings of the Cambridge Philosophical Society.
[27] The period-index problem in WC-groups II: abelian varieties , 2004, math/0406135.
[28] Armand Borel,et al. Seminar on complex multiplication : seminar held at the Institute for Advanced Study, Princeton, N.J., 1957-58 : [papers] , 1966 .
[29] P. L. Clark,et al. There are genus one curves of every index over every infinite, finitely generated field , 2014, Journal für die reine und angewandte Mathematik (Crelles Journal).
[30] Matthias Durr,et al. Cohomology Of Number Fields , 2016 .
[31] M. Madan. Class groups of global fields. , 1972 .
[32] Bertrand Toën. Descente fidèlement plate pour les n-champs d’Artin , 2011, Compositio Mathematica.