Hydrophobic nanostructured wood membrane for thermally efficient distillation

Derived from whole wood without structural change, the nanowood membrane provides a new material for efficient water desalination. Current membrane distillation (MD) is challenged by the inefficiency of water thermal separation from dissolved solutes, controlled by membrane porosity and thermal conductivity. Existing petroleum-derived polymeric membranes face major development barriers. Here, we demonstrate a first robust MD membrane directly fabricated from sustainable wood material. The hydrophobic nanowood membrane had high porosity (89 ± 3%) and hierarchical pore structure with a wide pore size distribution of crystalline cellulose nanofibrils and xylem vessels and lumina (channels) that facilitate water vapor transportation. The thermal conductivity was extremely low in the transverse direction, which reduces conductive heat transport. However, high thermal conductivity along the fiber enables efficient thermal dissipation along the axial direction. As a result, the membrane demonstrated excellent intrinsic vapor permeability (1.44 ± 0.09 kg m−1 K−1 s−1 Pa−1) and thermal efficiency (~70% at 60°C). The properties of thermal efficiency, water flux, scalability, and sustainability make nanowood highly desirable for MD applications.

[1]  Jia Zhu,et al.  Solar-driven interfacial evaporation , 2018, Nature Energy.

[2]  D. Jassby,et al.  The role of nanotechnology in industrial water treatment , 2018, Nature Nanotechnology.

[3]  H. Woodrow,et al.  : A Review of the , 2018 .

[4]  Wenli Zhang,et al.  Nickel-Based Membrane Electrodes Enable High-Rate Electrochemical Ammonia Recovery. , 2018, Environmental science & technology.

[5]  Anthony P. Straub,et al.  Membrane distillation at the water-energy nexus: limits, opportunities, and challenges , 2018 .

[6]  Shaomao Xu,et al.  Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose , 2018, Science Advances.

[7]  John A. Bush,et al.  Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes , 2018 .

[8]  M. Elimelech,et al.  Understanding the impact of membrane properties and transport phenomena on the energetic performance of membrane distillation desalination , 2017 .

[9]  Liangbing Hu,et al.  A conductive wood membrane anode improves effluent quality of microbial fuel cells , 2017 .

[10]  D. Jassby,et al.  Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes. , 2017, Nature nanotechnology.

[11]  Akshay Deshmukh,et al.  Nanophotonics-enabled solar membrane distillation for off-grid water purification , 2017, Proceedings of the National Academy of Sciences.

[12]  M. Elimelech,et al.  Post-fabrication modification of electrospun nanofiber mats with polymer coating for membrane distillation applications , 2017 .

[13]  L. Qu,et al.  Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water. , 2017, ACS nano.

[14]  Steven D. Lacey,et al.  Mesoporous, Three-Dimensional Wood Membrane Decorated with Nanoparticles for Highly Efficient Water Treatment. , 2017, ACS nano.

[15]  Yonggang Yao,et al.  Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation , 2016 .

[16]  Jongho Lee,et al.  Engineering Surface Energy and Nanostructure of Microporous Films for Expanded Membrane Distillation Applications. , 2016, Environmental science & technology.

[17]  Ngai Yin Yip,et al.  Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes , 2016, Nature Energy.

[18]  M. Mauter,et al.  Bacterial Nanocellulose Aerogel Membranes: Novel High-Porosity Materials for Membrane Distillation , 2016 .

[19]  Paul Denholm,et al.  Overgeneration from Solar Energy in California - A Field Guide to the Duck Chart , 2015 .

[20]  Amir AghaKouchak,et al.  Water and climate: Recognize anthropogenic drought , 2015, Nature.

[21]  Weidong Zhou,et al.  High-performance green flexible electronics based on biodegradable cellulose nanofibril paper , 2015, Nature Communications.

[22]  Markus Antonietti,et al.  Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. , 2015, Nature nanotechnology.

[23]  Pei Xu,et al.  Microbial capacitive desalination for integrated organic matter and salt removal and energy production from unconventional natural gas produced water , 2015 .

[24]  Tai‐Shung Chung,et al.  Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring , 2015 .

[25]  Enrico Drioli,et al.  Membrane distillation: Recent developments and perspectives , 2015 .

[26]  Menachem Elimelech,et al.  Omniphobic Membrane for Robust Membrane Distillation , 2014 .

[27]  B. L. Pangarkar,et al.  Status of membrane distillation for water and wastewater treatment—A review , 2014 .

[28]  Hai-Wei Liang,et al.  Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose , 2013 .

[29]  Lawrence L. Kazmerski,et al.  Energy Consumption and Water Production Cost of Conventional and Renewable-Energy-Powered Desalination Processes , 2013 .

[30]  Yi Cui,et al.  Transparent and conductive paper from nanocellulose fibers , 2013 .

[31]  Robert W. Field,et al.  Multiscale Modeling of Membrane Distillation: Some Theoretical Considerations , 2013 .

[32]  W. Adger,et al.  Cultural dimensions of climate change impacts and adaptation , 2013 .

[33]  N. Hilal,et al.  Membrane distillation: A comprehensive review , 2012 .

[34]  Bandaru V. Ramarao,et al.  Thermal Properties of Copy Paper Sheets , 2012 .

[35]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[36]  M. Khayet Membranes and theoretical modeling of membrane distillation: a review. , 2011, Advances in colloid and interface science.

[37]  J. Deutsch,et al.  Militarized youths in western Côte d’Ivoire: local processes of mobilization, demobilization, and related humanitarian interventions (2002-2007) , 2011 .

[38]  Karin Hofstetter,et al.  Prediction of transport properties of wood below the fiber saturation point – A multiscale homogenization approach and its experimental validation: Part I: Thermal conductivity , 2011 .

[39]  G. MacDonald,et al.  Water, climate change, and sustainability in the southwest , 2010, Proceedings of the National Academy of Sciences.

[40]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[41]  Zhiqun Lin,et al.  Anisotropic thermal transport in highly ordered TiO2 nanotube arrays , 2009 .

[42]  Christian Belloy,et al.  Polymer biodegradation: mechanisms and estimation techniques. , 2008, Chemosphere.

[43]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.

[44]  M. Qtaishat,et al.  Heat and mass transfer analysis in direct contact membrane distillation , 2008 .

[45]  P. Ajayan,et al.  Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays , 2005 .

[46]  Marek Gryta,et al.  Osmotic MD and other membrane distillation variants , 2005 .

[47]  Noam Lior,et al.  Membrane-distillation desalination: Status and potential , 2005 .

[48]  Paul Ih-Fei Liu,et al.  Energy, Technology, And The Environment , 2004 .

[49]  Anthony G. Fane,et al.  Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation , 2003 .

[50]  Takeshi Matsuura,et al.  Preparation and Characterization of Polyvinylidene Fluoride Membranes for Membrane Distillation , 2001 .

[51]  B. M. Suleiman,et al.  Thermal conductivity and diffusivity of wood , 1999, Wood Science and Technology.

[52]  T. Iversen,et al.  CP/MAS 13C-NMR spectroscopy applied to structure and interaction studies on cellulose I. , 1999, Solid state nuclear magnetic resonance.

[53]  Louise Poissant Part I , 1996, Leonardo.

[54]  Shin-ichi Nakao,et al.  Determination of pore size and pore size distribution: 3. Filtration membranes , 1994 .

[55]  K. Kaneko Determination of pore size and pore size distribution1. Adsorbents and catalysts , 1994 .

[56]  M.H.V. Mulder,et al.  Wetting criteria for the applicability of membrane distillation , 1987 .

[57]  E. A. Mason,et al.  Gas Transport in Porous Media: The Dusty-Gas Model , 1983 .

[58]  Hydrophobic nanostructured wood membrane for thermally efficient distillation , 2020 .

[59]  Jianwei Song,et al.  Highly Anisotropic, Highly Transparent Wood Composites , 2016, Advanced materials.

[60]  Yuehuan Yuan,et al.  Contact Angle and Wetting Properties , 2013 .

[61]  E. Drioli,et al.  MEMBRANE DISTILLATION , 2012 .

[62]  Robert H. White EFFECT OF LIGNIN CONTENT AND EXTRACTIVES ON THE HIGHER HEATING VALUE OF WOOD , 1987 .

[63]  M. Bodanszky Recent Developments and Perspectives , 1984 .

[64]  M. G. Kaganer,et al.  Thermal Insulation in Cryogenic Engineering , 1969 .