Social Responsibility of Algorithms

Should we be concerned by the massive use of devices and algorithms which automatically handle an increasing number of everyday activities within our societies? The paper makes a short overview of the scientific investigation around this topic, showing that the development, existence and use of such autonomous artifacts is much older than the recent interest in machine learning monopolised artificial intelligence. We then categorise the impact of using such artifacts to the whole process of data collection, structuring, manipulation as well as in recommendation and decision making. The suggested framework allows to identify a number of challenges for the whole community of decision analysts, both researchers and practitioners.

[1]  A. Sen,et al.  Social Choice Theory , 1980 .

[2]  Bracha Shapira,et al.  Recommender Systems Handbook , 2015, Springer US.

[3]  Harris Mateen Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy , 2018 .

[4]  M. Kane Measurement theory. , 1980, NLN publications.

[5]  Illtyd Trethowan Causality , 1938 .

[6]  Francesca Rossi,et al.  Embedding Ethical Principles in Collective Decision Support Systems , 2016, AAAI.

[7]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[8]  doaa Abu Elyounes Contextual Fairness: A Legal and Policy Analysis of Algorithmic Fairness , 2019, SSRN Electronic Journal.

[9]  Franco Turini,et al.  A Survey of Methods for Explaining Black Box Models , 2018, ACM Comput. Surv..

[10]  Alexis Tsoukiàs,et al.  What Is a Decision Problem? Preliminary Statements , 2013, ADT.

[11]  Richard M. Murray,et al.  Feedback Systems An Introduction for Scientists and Engineers , 2007 .

[12]  Y. Shoham Introduction to Multi-Agent Systems , 2002 .

[13]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[14]  Jeanne G. Harris,et al.  Competing on Analytics: The New Science of Winning , 2007 .

[15]  A. Mauri,et al.  Yield management and perceptions of fairness in the hotel business , 2007 .

[16]  J. Reidenberg,et al.  Accountable Algorithms , 2016 .

[17]  Terry Winograd,et al.  Understanding computers and cognition , 1986 .

[18]  Flavio Corradini,et al.  Fair Π , 2007 .

[19]  Toniann Pitassi,et al.  Fairness through awareness , 2011, ITCS '12.

[20]  Nuria Oliver,et al.  The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good , 2016, ArXiv.

[21]  Michael Wooldridge,et al.  Introduction to Multi-Agent Systems , 2016 .

[22]  Thomas H. Davenport,et al.  Automated Decision Making Comes of Age , 2005 .

[23]  Alexis Tsoukiàs,et al.  On the concept of decision aiding process: an operational perspective , 2007, Ann. Oper. Res..

[24]  Understanding algorithmic decision-making : Opportunities and challenges , 2019 .

[25]  Ralph H. Sprague,et al.  Building Effective Decision Support Systems , 1982 .

[26]  Cathy O'Neil,et al.  Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy , 2016, Vikalpa: The Journal for Decision Makers.

[27]  Alex Pentland,et al.  Fair, Transparent, and Accountable Algorithmic Decision-making Processes , 2017, Philosophy & Technology.

[28]  Stan Lipovetsky,et al.  Designing Economic Mechanisms , 2007, Technometrics.

[29]  Iyad Rahwan,et al.  Society-in-the-loop: programming the algorithmic social contract , 2017, Ethics and Information Technology.

[30]  Vasilis Efthymiou,et al.  End-to-End Entity Resolution for Big Data: A Survey , 2019, ArXiv.

[31]  Michael S. Scott Morton,et al.  A Framework for Management Information Systems , 2015 .

[32]  D. Citron Technological Due Process , 2007 .

[33]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[34]  Barry C. Smith,et al.  Yield Management at American Airlines , 1992 .

[35]  Andrew Reynolds,et al.  Electoral System Design: The New International IDEA Handbook , 2005 .

[36]  Suresh Venkatasubramanian,et al.  On the (im)possibility of fairness , 2016, ArXiv.

[37]  A. Ingold Revenue management: Hard-core tactics for market domination , 2002 .

[38]  Satoshi Nakamoto Bitcoin : A Peer-to-Peer Electronic Cash System , 2009 .

[39]  Charu C. Aggarwal,et al.  Recommender Systems: The Textbook , 2016 .

[40]  V. Daniel Hunt Smart Robots: A Handbook of Intelligent Robotic Systems , 1985 .

[41]  D. Hill,et al.  The Political Consequences of Electoral Laws , 1969 .

[42]  Ian I. Mitroff,et al.  A Program for Research on Management Information Systems , 1973 .

[43]  Arvind Narayanan,et al.  Bitcoin and Cryptocurrency Technologies - A Comprehensive Introduction , 2016 .

[44]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[45]  Tony Doyle,et al.  Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy , 2017, Inf. Soc..

[46]  Iyad Rahwan,et al.  The social dilemma of autonomous vehicles , 2015, Science.

[47]  Lawrence G. Sager Handbook of Computational Social Choice , 2015 .

[48]  M. Mead,et al.  Cybernetics , 1953, The Yale Journal of Biology and Medicine.

[49]  Eyke Hüllermeier,et al.  Preference Learning , 2005, Künstliche Intell..

[50]  Eyke Hllermeier,et al.  Preference Learning , 2010 .

[51]  F. Roberts Measurement Theory with Applications to Decisionmaking, Utility, and the Social Sciences: Measurement Theory , 1984 .

[52]  Josep Domingo-Ferrer,et al.  A Methodology for Direct and Indirect Discrimination Prevention in Data Mining , 2013, IEEE Transactions on Knowledge and Data Engineering.

[53]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[54]  Maranke Wieringa,et al.  What to account for when accounting for algorithms: a systematic literature review on algorithmic accountability , 2020, FAT*.

[55]  Peter G. W. Keen,et al.  Decision support systems : an organizational perspective , 1978 .

[56]  N. Amara,et al.  Learning from innovation failures: a systematic review of the literature and research agenda , 2019, Review of Managerial Science.

[57]  Thierry Marchant,et al.  Evaluation and Decision Models: A Critical Perspective , 2000 .

[58]  Daniel Pascot,et al.  Can DSS evolve without changing our view of the concept of 'problem'? , 1985, Decis. Support Syst..