Disjoint Systems (Extended Abstract)

A disjoint system of type (∀, ∃, κ, n) is a collection C={A, ..., A} of pairwise disjoint families of κ-subsets of an n-element set satisfying the following condition. For every ordered pair A i and A j of distinct members of C and for every A e C i there exists a B e C j that does not intersect A. Let D n (∀, ∃, κ) denote the maximum possible cardinality of a disjoint system of type (∀, ∃, κ, n). It is shown that for every fixed k≥2, $$lim_{n \to \infty } D_n \left( {\forall ,\exists ,k} \right)\left( {\begin{array}{*{20}c}n \\k \\\end{array} } \right)^{ - 1} = \frac{1}{2}.$$

[1]  Zoltán Füredi,et al.  Matchings and covers in hypergraphs , 1988, Graphs Comb..

[2]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[3]  Béla Bollobás,et al.  Random Graphs , 1985 .

[4]  Rudolf Ahlswede,et al.  A new direction in extremal theory , 1994 .

[5]  Zoltán Füredi,et al.  Colored packing of sets , 1987 .

[6]  I. Anderson Combinatorics of Finite Sets , 1987 .

[7]  Rudolf Ahlswede,et al.  On cloud-antichains and related configurations , 1990, Discret. Math..