10Be-inferred paleo-denudation rates imply that the mid-Miocene western central Andes eroded as slowly as today

[1]  F. Hilgen,et al.  On the Geologic Time Scale , 2012, Newsletters on Stratigraphy.

[2]  F. Schlunegger,et al.  Why is there no Coastal Cordillera at the Arica Bend (Western Central Andes)? , 2018 .

[3]  T. Ehlers,et al.  Tectonic Evolution of the Central Andean Plateau and Implications for the Growth of Plateaus , 2017 .

[4]  F. Stuart,et al.  Geomorphology on geologic timescales: Evolution of the late Cenozoic Pacific paleosurface in Northern Chile and Southern Peru , 2017 .

[5]  F. Schlunegger,et al.  Environmental controls on 10Be‐based catchment‐averaged denudation rates along the western margin of the Peruvian Andes , 2017 .

[6]  D. Burbank,et al.  Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods , 2017, Proceedings of the National Academy of Sciences.

[7]  F. Schlunegger,et al.  Late Miocene increase in precipitation in the Western Cordillera of the Andes between 18–19°S latitudes inferred from shifts in sedimentation patterns , 2017 .

[8]  R. Pik,et al.  Limited impact of Quaternary glaciations on denudation rates in Central Asia , 2017 .

[9]  G. Hoke,et al.  A practical tool for examining paleoerosion rates from sedimentary deposits using cosmogenic radionuclides: Examples from hypothetical scenarios and data , 2016 .

[10]  G. Hoke,et al.  Reconciling tectonic shortening, sedimentation and spatial patterns of erosion from 10 Be paleo-erosion rates in the Argentine Precordillera , 2016 .

[11]  L. Giambiagi,et al.  Temporal variation of the stress field during the construction of the central Andes: Constrains from the volcanic arc region (22–26°S), Western Cordillera, Chile, during the last 20 Ma , 2016 .

[12]  R. Reedy,et al.  The CRONUS-Earth Project: A synthesis , 2016 .

[13]  F. Stuart,et al.  Slow Cenozoic uplift of the western Andean Cordillera indicated by cosmogenic 3He in alluvial boulders from the Pacific Planation Surface , 2015 .

[14]  R. Lacassin,et al.  Andean growth and monsoon winds drive landscape evolution at SW margin of South America , 2015 .

[15]  Peter Brauer,et al.  Field‐aligned currents' scale analysis performed with the Swarm constellation , 2014 .

[16]  F. Blanckenburg,et al.  Cosmogenic Nuclides: Dates and Rates of Earth-Surface Change , 2014 .

[17]  T. Jordan,et al.  Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile , 2014 .

[18]  S. Carretier,et al.  Erosion in the Chilean Andes between 27°S and 39°S: tectonic, climatic and geomorphic control , 2014 .

[19]  A. Matmon,et al.  Cosmogenic nuclides in buried sediments from the hyperarid Atacama Desert, Chile , 2014 .

[20]  Tatsuhiko Sato,et al.  Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes , 2014 .

[21]  T. Jordan,et al.  Late Miocene to Early Pliocene paleohydrology and landscape evolution of Northern Chile, 19° to 20° S , 2013 .

[22]  D. Granger,et al.  A cosmic trip: 25 years of cosmogenic nuclides in geology , 2013 .

[23]  G. Caumon,et al.  Management of ambiguities in magnetostratigraphic correlation , 2013 .

[24]  D. Bourlès,et al.  Determination of muon attenuation lengths in depth profiles from in situ produced cosmogenic nuclides , 2013 .

[25]  H. Synal,et al.  The ETH Zurich AMS facilities: Performance parameters and reference materials , 2013 .

[26]  P. Deline,et al.  The AD 1717 rock avalanche deposits in the upper Ferret Valley (Italy): a dating approach with cosmogenic 10Be , 2012 .

[27]  F. Schlunegger,et al.  Migrating deformation in the Central Andes from enhanced orographic rainfall. , 2011, Nature communications.

[28]  A. Aldahan,et al.  Erosion rates and mechanisms of knickzone retreat inferred from 10Be measured across strong climate gradients on the northern and central Andes Western Escarpment , 2011 .

[29]  Yan Chen,et al.  Paleo-erosion rates in Central Asia since 9 Ma: A transient increase at the onset of Quaternary glaciations? , 2011 .

[30]  Michael J. Oimoen,et al.  ASTER Global Digital Elevation Model Version 2 - summary of validation results , 2011 .

[31]  F. Schlunegger,et al.  Sedimentology-based reconstructions of paleoclimate changes in the Central Andes in response to the uplift of the Andes, Arica region between 19 and 21°S latitude, northern Chile , 2010 .

[32]  T. Ehlers,et al.  Onset of Convective Rainfall During Gradual Late Miocene Rise of the Central Andes , 2010, Science.

[33]  Dieter Rickenmann,et al.  Sediment loads due to fluvial transport and debris flows during the 2005 flood events in Switzerland , 2010 .

[34]  P. Kubik,et al.  10Be and 26Al measurements at the Zurich 6 MV Tandem AMS facility , 2010 .

[35]  Kelin X. Whipple,et al.  Landscape form and millennial erosion rates in the San Gabriel Mountains, CA , 2010 .

[36]  K. Whipple Erratum: The influence of climate on the tectonic evolution of mountain belts (Nature Geoscience 2, 97104 (2009)) , 2009 .

[37]  R. Wieler,et al.  Complex multiple cosmogenic nuclide concentration and histories in the arid Rio Lluta catchment, northern Chile , 2009 .

[38]  K. Whipple The influence of climate on the tectonic evolution of mountain belts. , 2009 .

[39]  T. Ehlers,et al.  End member models for Andean Plateau uplift , 2008 .

[40]  J. Stone,et al.  A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements , 2008 .

[41]  K. Norton,et al.  Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the Central Alps of Switzerland , 2007 .

[42]  Bryan L. Isacks,et al.  Geomorphic evidence for post‐10 Ma uplift of the western flank of the central Andes 18°30′–22°S , 2007 .

[43]  T. Andersen,et al.  Exhuming Norwegian ultrahigh‐pressure rocks: Overprinting extensional structures and the role of the Nordfjord‐Sogn Detachment Zone , 2007 .

[44]  B. Bookhagen,et al.  Tectonics and Climate of the Southern Central Andes , 2007 .

[45]  Susan Ivy-Ochs,et al.  Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets , 2007 .

[46]  Todd A. Ehlers,et al.  Limits to quantifying climate driven changes in denudation rates with cosmogenic radionuclides , 2006 .

[47]  D. Bourlès,et al.  Applications of ancient cosmic-ray exposures: Theory, techniques and limitations , 2006 .

[48]  F. Schlunegger,et al.  Assessing the age of relief growth in the Andes of northern Chile: Magneto‐polarity chronologies from Neogene continental sections , 2005 .

[49]  F. Blanckenburg The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment , 2005 .

[50]  G. Hérail,et al.  Late Cenozoic deformation and uplift of the western flank of the Altiplano: Evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30′S) , 2005 .

[51]  O. Oncken,et al.  Uplift of the western Altiplano plateau: Evidence from the Precordillera between 20° and 21°S (northern Chile) , 2004 .

[52]  B. Isacks,et al.  Groundwater-sapping origin for the giant quebradas of northern Chile , 2004 .

[53]  Luísa Pinto,et al.  Sedimentación sintectónica asociada a las estructuras neógenas en la Precordillera de la zona de Moquella, Tarapacá (19°15'S, norte de Chile) , 2004 .

[54]  N. Hovius,et al.  Paleoerosion Rates from Cosmogenic 10Be in a 1.3 Ma Terrace Sequence: Response of the River Meuse to Changes in Climate and Rock Uplift , 2004, The Journal of Geology.

[55]  Paul Davis,et al.  Cenozoic climate change as a possible cause for the rise of the Andes , 2003, Nature.

[56]  Adrian J. Hartley,et al.  The central Andean west‐slope rainshadow and its potential contribution to the origin of hyper‐aridity in the Atacama Desert , 2003 .

[57]  G. Wörner,et al.  Evolution of the West Andean Escarpment at 18°S (N. Chile) during the last 25 Ma: uplift, erosion and collapse through time , 2002 .

[58]  David R. Montgomery,et al.  Climate, tectonics, and the morphology of the Andes , 2001 .

[59]  N. Hovius,et al.  Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments , 2001 .

[60]  G. Wörner,et al.  Geochronology (40Ar/39Ar, K-Ar and He-exposure ages) of Cenozoic magmatic rocks from Northern Chile (18-22°S): implications for magmatism and tectonic evolution of the central Andes , 2000 .

[61]  G. Tucker,et al.  Drainage basin responses to climate change , 1997 .

[62]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[63]  D. Lal,et al.  Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models , 1991 .

[64]  William S. Curran,et al.  A/I: a synthesis , 1982, ACM-SE 20.