Design, chemical synthesis of 3-(9H-fluoren-9-yl)pyrrolidine-2,5-dione derivatives and biological activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis.

[1]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data , 2012, BMC Bioinformatics.

[2]  V. Bernardes-Génisson,et al.  Cross-docking study on InhA inhibitors: a combination of Autodock Vina and PM6-DH2 simulations to retrieve bio-active conformations. , 2012, Organic & biomolecular chemistry.

[3]  M. Pasca,et al.  Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents. , 2012, European journal of medicinal chemistry.

[4]  O. Shishkin,et al.  Catalysis by Lithium Perchlorate Enables Double-Conjugate Addition of Electron-Deficient Maleimides to 2-Aminopyridines and 2-Aminothiazoles , 2012 .

[5]  M. Pasca,et al.  Synthesis and biological activities of triazole derivatives as inhibitors of InhA and antituberculosis agents. , 2011, European journal of medicinal chemistry.

[6]  Philip E. Bourne,et al.  A Machine Learning-Based Method To Improve Docking Scoring Functions and Its Application to Drug Repurposing , 2011, J. Chem. Inf. Model..

[7]  Peter J Tonge,et al.  A Slow, Tight Binding Inhibitor of InhA, the Enoyl-Acyl Carrier Protein Reductase from Mycobacterium tuberculosis* , 2010, The Journal of Biological Chemistry.

[8]  K. Kamiński,et al.  Synthesis, physicochemical and anticonvulsant properties of new N-[(4-arylpiperazin-1-yl)alkyl]-3-phenyl- and 3-(3-methyl-phenyl)-pyrrolidine-2,5-diones. , 2009, Acta poloniae pharmaceutica.

[9]  Joel S. Freundlich,et al.  Triclosan Derivatives: Towards Potent Inhibitors of Drug‐Sensitive and Drug‐Resistant Mycobacterium tuberculosis , 2009, ChemMedChem.

[10]  Thomas Stützle,et al.  Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS , 2009, J. Chem. Inf. Model..

[11]  Amita Jain,et al.  Extensively drug-resistant tuberculosis: current challenges and threats. , 2008, FEMS immunology and medical microbiology.

[12]  Zhenheng Lai,et al.  Total synthesis of (±)-camphorataimides and (±)-himanimides by NaBH4/Ni(OAc)2 or Zn/AcOH stereoselective reduction , 2008 .

[13]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[14]  P. Ortiz de Montellano,et al.  Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. , 2007, Bioorganic & medicinal chemistry.

[15]  René Thomsen,et al.  MolDock: a new technique for high-accuracy molecular docking. , 2006, Journal of medicinal chemistry.

[16]  P. Kongsaeree,et al.  Hirsutellones A-E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594 , 2005 .

[17]  N. Brunner,et al.  Discovering the Mechanism of Action of Novel Antibacterial Agents through Transcriptional Profiling of Conditional Mutants , 2005, Antimicrobial Agents and Chemotherapy.

[18]  Thomas Lampe,et al.  Identification and Characterization of the First Class of Potent Bacterial Acetyl-CoA Carboxylase Inhibitors with Antibacterial Activity* , 2004, Journal of Biological Chemistry.

[19]  Peter J. Tonge,et al.  The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: Adduct affinity and drug resistance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  David Alland,et al.  Targeting Tuberculosis and Malaria through Inhibition of Enoyl Reductase , 2003, Journal of Biological Chemistry.

[21]  D. Fiorini,et al.  Conjugate addition of nitroalkanes to N-substituted maleimides. Synthesis of 3-alkylsuccinimides and pyrrolidines , 2003 .

[22]  J. Correia,et al.  New Mixed‐Ligand ReV Complexes with Bis(2‐mercaptoethyl) Sulfide and Functionalized Thioimidazolyl Ligands , 2002 .

[23]  W. Figg,et al.  Thalidomide metabolism by the CYP2C subfamily. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[24]  J. Einhorn,et al.  MILD AND CONVENIENT ONE POT SYNTHESIS OF N-HYDROXYIMIDES FROM N-UNSUBSTITUTED IMIDES , 2001 .

[25]  H. Drugeon,et al.  Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. , 2000, The Journal of antimicrobial chemotherapy.

[26]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[27]  M. Cynamon,et al.  High-Dose Isoniazid Therapy for Isoniazid-Resistant Murine Mycobacterium tuberculosis Infection , 1999, Antimicrobial Agents and Chemotherapy.

[28]  C. Vilchèze,et al.  Crystal Structure of the Mycobacterium tuberculosis Enoyl-ACP Reductase, InhA, in Complex with NAD+ and a C16 Fatty Acyl Substrate* , 1999, The Journal of Biological Chemistry.

[29]  M. López-Rodríguez,et al.  Synthesis and structure-activity relationships of a new model of arylpiperazines. 4. 1-[omega-(4-Arylpiperazin-1-yl)alkyl]-3-(diphenylmethylene) - 2, 5-pyrrolidinediones and -3-(9H-fluoren-9-ylidene)-2, 5-pyrrolidinediones: study of the steric requirements of the terminal amide fragment on 5-HT1A af , 1999, Journal of medicinal chemistry.

[30]  Solomon H. Snyder,et al.  Drugs and the brain , 1996 .

[31]  K. Nakanishi,et al.  Andrimid, a new peptide antibiotic produced by an intracellular bacterial symbiont isolated from a brown planthopper , 1987 .

[32]  A. Crider,et al.  Synthesis and anticancer activity of nitrosourea derivatives of phensuximide. , 1980, Journal of medicinal chemistry.

[33]  K. Bloch Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. , 2006, Advances in enzymology and related areas of molecular biology.

[34]  A. Sieglitz,et al.  Über 3‐Hydroxy‐fluoranthen‐carbonsäuren‐(1), ‐(2) und ‐(10) , 1962 .