Counting sum-free sets in abelian groups
暂无分享,去创建一个
Wojciech Samotij | Noga Alon | Robert Morris | J'ozsef Balogh | N. Alon | J. Balogh | R. Morris | Wojciech Samotij
[1] Miklós Simonovits,et al. Extremal subgraphs of random graphs , 1990, J. Graph Theory.
[2] A. A. Sapozhenko. Asymptotics of the number of sum-free sets in abelian groups of even order , 2002 .
[3] P. Erdos,et al. SOME RECENT RESULTS ON EXTREMAL PROBLEMS IN GRAPH THEORY (Results) , 2002 .
[4] S. Janson,et al. Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .
[5] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[6] Wojciech Samotij,et al. The number of Ks,t‐free graphs , 2011, J. Lond. Math. Soc..
[7] Deryk Osthus,et al. For Which Densities are Random Triangle-Free Graphs Almost Surely Bipartite? , 2003, Comb..
[8] Vojtech Rödl,et al. On Schur Properties of Random Subsets of Integers , 1996 .
[9] David Galvin,et al. On phase transition in the hard-core model on ${\bf Z}^d$ , 2012, 1206.3144.
[10] N. Alon. Independent sets in regular graphs and sum-free subsets of finite groups , 1991 .
[11] J. Balogh,et al. Independent sets in hypergraphs , 2012, 1204.6530.
[12] Noga Alon,et al. The Probabilistic Method, Third Edition , 2008, Wiley-Interscience series in discrete mathematics and optimization.
[13] Daniel J. Kleitman,et al. On the number of graphs without 4-cycles , 1982, Discret. Math..
[14] W. T. Gowers,et al. Combinatorial theorems in sparse random sets , 2010, 1011.4310.
[15] H. P. Yap,et al. Maximal Sum-Free Sets of Elements of Finite Groups , 1969 .
[16] alcun K. grafo. ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .
[17] Wojciech Samotij,et al. Odd cutsets and the hard-core model on Z^d , 2011 .
[18] Vojtech Rödl,et al. Sharp Bounds For Some Multicolor Ramsey Numbers , 2005, Comb..
[19] Wojciech Samotij,et al. Random sum-free subsets of abelian groups , 2011, 1103.2041.
[20] Svante Janson,et al. Random graphs , 2000, ZOR Methods Model. Oper. Res..
[21] Jeff Kahn,et al. On Phase Transition in the Hard-Core Model on ${\mathbb Z}^d$ , 2004, Combinatorics, Probability and Computing.
[22] Ph. G. Kolaitis,et al. _{+1}-free graphs: asymptotic structure and a 0-1 law , 1987 .
[23] Александр Антонович Сапоженко,et al. О числе независимых множеств в расширителях@@@On the number of independent sets in extenders , 2001 .
[24] V. Rödl,et al. Threshold functions for Ramsey properties , 1995 .
[25] J. Kahn. Entropy, independent sets and antichains: A new approach to Dedekind's problem , 2001 .
[26] N. Linial,et al. Expander Graphs and their Applications , 2006 .
[28] Wojciech Samotij,et al. The number of Km,m-free graphs , 2011, Comb..
[29] Ben Green,et al. Sum-free sets in abelian groups , 2003 .
[30] A. A. SAPOZHENKO. On the number of independent sets in expanders , 2001 .
[31] Noga Alon,et al. Explicit construction of linear sized tolerant networks , 1988, Discret. Math..
[32] V. Rödl,et al. Arithmetic progressions of length three in subsets of a random set , 1996 .
[33] Prasad Tetali,et al. Matchings and independent sets of a fixed size in regular graphs , 2009, J. Comb. Theory, Ser. A.
[34] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[35] N. Alon,et al. The Probabilistic Method: Alon/Probabilistic , 2008 .
[36] P. Erdös,et al. On the structure of linear graphs , 1946 .
[37] Andrzej Ruciński,et al. Rado Partition Theorem for Random Subsets of Integers , 1997 .
[38] Vojtech Rödl,et al. Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..
[39] Vojtech Rödl,et al. A sharp threshold for random graphs with a monochromatic triangle in every edge coloring , 2006, Memoirs of the American Mathematical Society.
[40] Hans Jürgen Prömel,et al. On the asymptotic structure of sparse triangle free graphs , 1996, J. Graph Theory.
[41] Wojciech Samotij,et al. A refinement of the Cameron–Erdős conjecture , 2012, 1202.5200.
[42] Jeff Kahn,et al. An Entropy Approach to the Hard-Core Model on Bipartite Graphs , 2001, Combinatorics, Probability and Computing.