Counting sum-free sets in abelian groups

In this paper we study sum-free sets of order m in finite abelian groups. We prove a general theorem about independent sets in 3-uniform hypergraphs, which allows us to deduce structural results in the sparse setting from stability results in the dense setting. As a consequence, we determine the typical structure and asymptotic number of sum-free sets of order m in abelian groups G whose order n is divisible by a prime q with q ≡ 2 (mod 3), for every m ⩾ $C(q)\sqrt {n\log n} $, thus extending and refining a theorem of Green and Ruzsa. In particular, we prove that almost all sumfree subsets of size m are contained in a maximum-size sum-free subset of G. We also give a completely self-contained proof of this statement for abelian groups of even order, which uses spectral methods and a new bound on the number of independent sets of a fixed size in an (n, d, λ)-graph.

[1]  Miklós Simonovits,et al.  Extremal subgraphs of random graphs , 1990, J. Graph Theory.

[2]  A. A. Sapozhenko Asymptotics of the number of sum-free sets in abelian groups of even order , 2002 .

[3]  P. Erdos,et al.  SOME RECENT RESULTS ON EXTREMAL PROBLEMS IN GRAPH THEORY (Results) , 2002 .

[4]  S. Janson,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[5]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[6]  Wojciech Samotij,et al.  The number of Ks,t‐free graphs , 2011, J. Lond. Math. Soc..

[7]  Deryk Osthus,et al.  For Which Densities are Random Triangle-Free Graphs Almost Surely Bipartite? , 2003, Comb..

[8]  Vojtech Rödl,et al.  On Schur Properties of Random Subsets of Integers , 1996 .

[9]  David Galvin,et al.  On phase transition in the hard-core model on ${\bf Z}^d$ , 2012, 1206.3144.

[10]  N. Alon Independent sets in regular graphs and sum-free subsets of finite groups , 1991 .

[11]  J. Balogh,et al.  Independent sets in hypergraphs , 2012, 1204.6530.

[12]  Noga Alon,et al.  The Probabilistic Method, Third Edition , 2008, Wiley-Interscience series in discrete mathematics and optimization.

[13]  Daniel J. Kleitman,et al.  On the number of graphs without 4-cycles , 1982, Discret. Math..

[14]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[15]  H. P. Yap,et al.  Maximal Sum-Free Sets of Elements of Finite Groups , 1969 .

[16]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .

[17]  Wojciech Samotij,et al.  Odd cutsets and the hard-core model on Z^d , 2011 .

[18]  Vojtech Rödl,et al.  Sharp Bounds For Some Multicolor Ramsey Numbers , 2005, Comb..

[19]  Wojciech Samotij,et al.  Random sum-free subsets of abelian groups , 2011, 1103.2041.

[20]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[21]  Jeff Kahn,et al.  On Phase Transition in the Hard-Core Model on ${\mathbb Z}^d$ , 2004, Combinatorics, Probability and Computing.

[22]  Ph. G. Kolaitis,et al.  _{+1}-free graphs: asymptotic structure and a 0-1 law , 1987 .

[23]  Александр Антонович Сапоженко,et al.  О числе независимых множеств в расширителях@@@On the number of independent sets in extenders , 2001 .

[24]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[25]  J. Kahn Entropy, independent sets and antichains: A new approach to Dedekind's problem , 2001 .

[26]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[28]  Wojciech Samotij,et al.  The number of Km,m-free graphs , 2011, Comb..

[29]  Ben Green,et al.  Sum-free sets in abelian groups , 2003 .

[30]  A. A. SAPOZHENKO On the number of independent sets in expanders , 2001 .

[31]  Noga Alon,et al.  Explicit construction of linear sized tolerant networks , 1988, Discret. Math..

[32]  V. Rödl,et al.  Arithmetic progressions of length three in subsets of a random set , 1996 .

[33]  Prasad Tetali,et al.  Matchings and independent sets of a fixed size in regular graphs , 2009, J. Comb. Theory, Ser. A.

[34]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[35]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[36]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[37]  Andrzej Ruciński,et al.  Rado Partition Theorem for Random Subsets of Integers , 1997 .

[38]  Vojtech Rödl,et al.  Large triangle-free subgraphs in graphs withoutK4 , 1986, Graphs Comb..

[39]  Vojtech Rödl,et al.  A sharp threshold for random graphs with a monochromatic triangle in every edge coloring , 2006, Memoirs of the American Mathematical Society.

[40]  Hans Jürgen Prömel,et al.  On the asymptotic structure of sparse triangle free graphs , 1996, J. Graph Theory.

[41]  Wojciech Samotij,et al.  A refinement of the Cameron–Erdős conjecture , 2012, 1202.5200.

[42]  Jeff Kahn,et al.  An Entropy Approach to the Hard-Core Model on Bipartite Graphs , 2001, Combinatorics, Probability and Computing.