Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

Abstract. The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m  ×  250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules cm−2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

[1]  Jun Wang,et al.  An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework , 2016 .

[2]  J. Burrows,et al.  A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft , 2015 .

[3]  P. Monks,et al.  High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI) , 2015 .

[4]  Cheng Liu Characterization and verification of ACAM slit functions for trace-gas retrievals during the 2011 DISCOVER-AQ flight campaign , 2015 .

[5]  Xiong Liu,et al.  Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval , 2015 .

[6]  Michael Eisinger,et al.  The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing – an overview , 2015 .

[7]  David G. Streets,et al.  U.S. NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI) , 2015 .

[8]  Xiong Liu,et al.  Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval , 2015 .

[9]  Jun Wang,et al.  An algorithm for simultaneous inversion of aerosol properties and surface reflectance from airborne GeoEO-TASO hyperspectral data , 2014 .

[10]  K. Chance,et al.  Glyoxal retrieval from the Ozone Monitoring Instrument , 2014 .

[11]  P. Shepson,et al.  The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) – a novel imaging DOAS device for 2-D and 3-D imaging of trace gases and aerosols , 2014 .

[12]  Matthew Kowalewski,et al.  The GeoTASO airborne spectrometer project , 2014, Optics & Photonics - Optical Engineering + Applications.

[13]  Nickolay A. Krotkov,et al.  Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from space‐based measurements , 2014 .

[14]  Matthew G. Kowalewski,et al.  Remote sensing capabilities of the GEO-CAPE airborne simulator , 2014, Optics & Photonics - Optical Engineering + Applications.

[15]  Xiong Liu,et al.  Relationship Between Column-Density and Surface Mixing Ratio: Statistical Analysis of O3 and NO2 Data from the July 2011 Maryland DISCOVER-AQ Mission , 2014 .

[16]  J. Burrows,et al.  A wide field-of-view imaging DOAS instrument for continuous trace gas mapping from aircraft , 2014 .

[17]  Jonathan,et al.  Improvements to the WRF-CMAQ Modeling System for Fine-Scale Air Quality Simulations , 2014 .

[18]  R. Dickerson,et al.  Evaluation of the use of a commercially available cavity ringdown absorption spectrometer for measuring NO2 in flight, and observations over the Mid-Atlantic States, during DISCOVER-AQ , 2015, Journal of Atmospheric Chemistry.

[19]  James F. Gleason,et al.  A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments : applications to OMI , 2013 .

[20]  J. Marshall,et al.  Remote sensing of exposure to NO2: satellite versus ground based measurement in a large urban area , 2013 .

[21]  Ryan Thalman,et al.  Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure. , 2013, Physical chemistry chemical physics : PCCP.

[22]  R. Martin,et al.  Improved Satellite Retrievals of NO2 and SO2 over the Canadian Oil Sands and Comparisons with Surface Measurements , 2013 .

[23]  R. Martin,et al.  Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide , 2013 .

[24]  N. Krotkov,et al.  Scaling relationship for NO2 pollution and urban population size: a satellite perspective. , 2013, Environmental science & technology.

[25]  Julian D. Marshall,et al.  Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area , 2013 .

[26]  D P Edwards,et al.  Tropospheric emissions: monitoring of pollution (TEMPO) , 2012, Optics & Photonics - Optical Engineering + Applications.

[27]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[28]  Menghua Wang,et al.  The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission , 2012 .

[29]  M. V. Roozendael,et al.  High-resolution NO 2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer , 2012 .

[30]  Paul Ingmann,et al.  Requirements for the GMES Atmosphere Service and ESA's implementation concept: Sentinels-4/-5 and -5p , 2012 .

[31]  Ruediger Lang,et al.  Characterization and correction of Global Ozone Monitoring Experiment 2 ultraviolet measurements and application to ozone profile retrievals , 2012 .

[32]  J. Kim GEMS(Geostationary Environment Monitoring Spectrometer) onboard the GeoKOMPSAT to Monitor Air Quality in high Temporal and Spatial Resolution over Asia-Pacific Region , 2012 .

[33]  Update of long-term trends analysis of ambient 8-hour ozone and precursor monitoring data in the South Central U.S.; encouraging news. , 2012, Journal of environmental monitoring : JEM.

[34]  Xiong Liu,et al.  Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME‐2) using an optimal estimation approach: Algorithm and initial validation , 2011 .

[35]  Henk Eskes,et al.  An improved tropospheric NO 2 column retrieval algorithm for the Ozone Monitoring Instrument , 2011 .

[36]  Michael D. King,et al.  Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements , 2011 .

[37]  Da‐Lin Zhang,et al.  Impact of fair-weather cumulus clouds and the Chesapeake Bay breeze on pollutant transport and transformation , 2011 .

[38]  Andreas Hilboll,et al.  An improved NO 2 retrieval for the GOME-2 satellite instrument , 2011 .

[39]  E. J. Llewellyn,et al.  Fast NO 2 retrievals from Odin-OSIRIS limb scatter measurements , 2010 .

[40]  Kelly Chance,et al.  An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared , 2010 .

[41]  Tanya L. Otte,et al.  The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: updates through MCIPv3.4.1 , 2010 .

[42]  Chao Luo,et al.  Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes , 2010 .

[43]  John P. Burrows,et al.  On the improvement of NO 2 satellite retrievals – aerosol impact on the airmass factors , 2009 .

[44]  Xiong Liu,et al.  Ozone profile retrievals from the Ozone Monitoring Instrument , 2009 .

[45]  Rainer M. E. Illing Design and development of the PolZero Time Domain Polarization Scrambler , 2009, Optical Engineering + Applications.

[46]  Maria Tzortziou,et al.  NO2 column amounts from ground‐based Pandora and MFDOAS spectrometers using the direct‐sun DOAS technique: Intercomparisons and application to OMI validation , 2009 .

[47]  Wayne C. Welch,et al.  Airborne high spectral resolution lidar for profiling aerosol optical properties. , 2008, Applied optics.

[48]  Quintus Kleipool,et al.  Earth surface reflectance climatology from 3 years of OMI data , 2008 .

[49]  Joseph P. Pinto,et al.  Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument , 2008 .

[50]  Steffen Beirle,et al.  Direct observation of two dimensional trace gas distribution with an airborne Imaging DOAS instrument , 2008 .

[51]  Robert J. D. Spurr,et al.  VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media , 2006 .

[52]  D. Byun,et al.  Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System , 2006 .

[53]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[54]  Xiong Liu,et al.  Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation , 2005 .

[55]  Jordan G. Powers,et al.  A Description of the Advanced Research WRF Version 2 , 2005 .

[56]  Kelly Chance,et al.  Undersampling correction for array detector-based satellite spectrometers. , 2005, Applied optics.

[57]  Henk Eskes,et al.  Error analysis for tropospheric NO2 retrieval from space , 2004 .

[58]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[59]  James F. Gleason,et al.  An improved retrieval of tropospheric nitrogen dioxide from GOME , 2002 .

[60]  Robert J. D. Spurr,et al.  Air-mass factor formulation for spectroscopic measurements from satellites: application to formaldeh , 2001 .

[61]  Thomas P. Kurosu,et al.  Satellite observations of formaldehyde over North America from GOME , 2000 .

[62]  B. Hannegan,et al.  Stratospheric ozone in 3-D models : A simple chemistry and the cross-tropopause flux , 2000 .

[63]  Kelly Chance,et al.  Analysis of BrO measurements from the Global Ozone Monitoring Experiment , 1998 .

[64]  Ann Carine Vandaele,et al.  Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K , 1998 .

[65]  K. Chance,et al.  Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. , 1997, Applied optics.

[66]  J. Brion,et al.  High-resolution laboratory absorption cross section of O3. Temperature effect , 1993 .

[67]  M. Prather Catastrophic loss of stratospheric ozone in dense volcanic clouds , 1992 .