Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary

In this article we study the degenerate system (@r"1,@r"2>=0) subject to memory conditions on the boundary given [email protected]"1(x)u"t"[email protected][email protected](u-v)[email protected]]0,+~[,@r"2(x)v"t"[email protected]@a(u-v)[email protected]]0,+~[,[email protected]"0,[email protected]!"0^tg"1(t-s)@[email protected][email protected](s)[email protected]"1x]0,+~[,[email protected]"0,[email protected]!"0^tg"2(t-s)@[email protected][email protected](s)[email protected]"1x]0,+~[,(u(0),v(0))=(u^0,v^0)(@r"1u"t(0),@r"2v"t(0))=(@r"1u^1,@r"2v^1)[email protected],where @W is a bounded region in R^n whose boundary is partitioned into disjoint sets @C"0, @C"1. We prove that the dissipations given by the memory terms are strong enough to guarantee exponential (or polynomial) decay provided the relaxation functions also decay exponentially (or polynomially) and with the same rate of decay.

[1]  Mohammed Aassila Strong asymptotic stability of a compactly coupled system of wave equations , 2001, Appl. Math. Lett..

[2]  Mauro de Lima Santos,et al.  Decay rates for solutions of a system of wave equations with memory , 2002 .

[3]  M. Roberts,et al.  The asymptotic behaviour of a logistic epidemic model with stochastic disease transmission , 1999 .

[4]  Annick Beyrath Stabilisation indirecte interne par un feedback localement distribué de systèmes d'équations couplées , 2001 .

[5]  R. Racke Lectures on nonlinear evolution equations , 1992 .

[6]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[7]  Constantine M. Dafermos,et al.  A Nonlinear Hyperbolic Volterra Equation in Viscoelasticity. , 1980 .

[8]  M. Aassila,et al.  A note on the boundary stabilization of a compactly coupled system of wave equations , 1999 .

[9]  B. Rao,et al.  Boundary stabilization of compactly coupled wave equations , 1997 .

[10]  N. Tatar,et al.  Non-Existence Results for a Semilinear Hyperbolic Problem with Boundary Condition of Memory Type , 2000 .

[11]  M. Aassila,et al.  Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term , 2002 .

[12]  I. L. Barskii Exact Formulas for the General Solution of a Class of Standard Ordinary Linear Differential Equations: I , 2002 .

[13]  Vilmos Komornik,et al.  Indirect internal stabilization of weakly coupled evolution equations , 2002 .

[14]  A. Soufyane Uniform stability of displacement coupled second-order equations , 2001 .

[15]  A. Morro,et al.  A boundary condition with memory in electromagnetism , 1996 .

[16]  M. Ciarletta A differential problem for heat equation with a boundary condition with memory , 1997 .

[17]  Fatiha Alabau,et al.  Stabilisation frontière indirecte de systèmes faiblement couplés , 1999 .

[18]  Vilmos Komornik,et al.  Ingham-Type Theorems for Vector-Valued Functions and Observability of Coupled Linear Systems , 1999 .

[19]  M. M. Cavalcanti,et al.  Asymptotic Stability and Energy Decay Rates for Solutions of the Wave Equation with Memory in a Star-Shaped Domain , 2000, SIAM J. Control. Optim..

[20]  Jaime E. Muñoz Rivera,et al.  Exponential Decay of Non-linear Wave Equation with a Viscoelastic Boundary Condition , 2000 .

[21]  Mauro de Lima Santos,et al.  Asymptotic Behavior of Solutions to Wave Equations with a Memory Condition at the Boundary , 2001 .

[22]  J. A. Soriano,et al.  On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions , 2003 .