Architecture of the RNA polymerase–Spt4/5 complex and basis of universal transcription processivity

Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP‐associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5–RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N‐terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C‐terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors.

[1]  P. Cramer,et al.  RNA polymerase II–TFIIB structure and mechanism of transcription initiation , 2009, Nature.

[2]  P. Cramer,et al.  Structural Basis of Transcription: RNA Polymerase II at 2.8 Ångstrom Resolution , 2001, Science.

[3]  Shigeyuki Yokoyama,et al.  Structural and sequence comparisons arising from the solution structure of the transcription elongation factor NusG from Thermus thermophilus , 2004, Proteins: Structure, Function, and Bioinformatics.

[4]  Evgeny Nudler,et al.  Termination Factor Rho and Its Cofactors NusA and NusG Silence Foreign DNA in E. coli , 2008, Science.

[5]  D. Gilmour,et al.  Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex , 2010, Proceedings of the National Academy of Sciences.

[6]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Translation Functions Biological Crystallography Likelihood-enhanced Fast Translation Functions , 2022 .

[7]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[8]  I. Artsimovitch,et al.  Functional regions of the N-terminal domain of the antiterminator RfaH , 2010, Molecular microbiology.

[9]  H. Handa,et al.  Evidence that P‐TEFb alleviates the negative effect of DSIF on RNA polymerase II‐dependent transcription in vitro , 1998, The EMBO journal.

[10]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[11]  Anton Meinhart,et al.  Structures of Complete RNA Polymerase II and Its Subcomplex, Rpb4/7* , 2005, Journal of Biological Chemistry.

[12]  M. Gottesman,et al.  Requirement for E. coli NusG protein in factor-dependent transcription termination , 1992, Cell.

[13]  S. Hahn,et al.  The positions of TFIIF and TFIIE in the RNA polymerase II transcription preinitiation complex , 2007, Nature Structural &Molecular Biology.

[14]  Johannes Söding,et al.  Uniform transitions of the general RNA polymerase II transcription complex , 2010, Nature Structural &Molecular Biology.

[15]  K. Murakami,et al.  Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase beta' subunit. , 2005, Journal of molecular biology.

[16]  R. Huber,et al.  Crystal structures of transcription factor NusG in light of its nucleic acid‐ and protein‐binding activities , 2002, The EMBO journal.

[17]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[18]  D. Stuart,et al.  Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase Structure , 2009, PLoS biology.

[19]  K. Murakami,et al.  RNA polymerase and transcription elongation factor Spt4/5 complex structure , 2010, Proceedings of the National Academy of Sciences.

[20]  A. Leslie,et al.  The integration of macromolecular diffraction data. , 2006, Acta crystallographica. Section D, Biological crystallography.

[21]  Tahir H. Tahirov,et al.  Structural basis for transcription elongation by bacterial RNA polymerase , 2007, Nature.

[22]  D. Price,et al.  Analysis of factor interactions with RNA polymerase II elongation complexes using a new electrophoretic mobility shift assay , 2008, Nucleic acids research.

[23]  A. Shatkin,et al.  Transcription elongation factor hSPT5 stimulates mRNA capping. , 1999, Genes & development.

[24]  Steven Hahn,et al.  Phosphorylation of the Transcription Elongation Factor Spt5 by Yeast Bur1 Kinase Stimulates Recruitment of the PAF Complex , 2009, Molecular and Cellular Biology.

[25]  L. Jansen,et al.  Spt4 modulates Rad26 requirement in transcription‐coupled nucleotide excision repair , 2000, The EMBO journal.

[26]  H. Handa,et al.  Repression of RNA Polymerase II Elongation In Vivo Is Critically Dependent on the C-Terminus of Spt5 , 2009, PloS one.

[27]  F. Winston,et al.  Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. , 1998, Genes & development.

[28]  P. Doruker,et al.  Collective Motions of RNA Polymerases. Analysis of Core Enzyme, Elongation Complex and Holoenzyme , 2004, Journal of biomolecular structure & dynamics.

[29]  Vasco M. Barreto,et al.  Activation-Induced Cytidine Deaminase Targets DNA at Sites of RNA Polymerase II Stalling by Interaction with Spt5 , 2010, Cell.

[30]  D. Court,et al.  A spring-loaded state of NusG in its functional cycle is suggested by X-ray crystallography and supported by site-directed mutants. , 2003, Biochemistry.

[31]  Björn M. Burmann,et al.  A NusE:NusG Complex Links Transcription and Translation , 2010, Science.

[32]  D. Vassylyev,et al.  The elongation factor RfaH and the initiation factor σ bind to the same site on the transcription elongation complex , 2008, Proceedings of the National Academy of Sciences.

[33]  Akira Hirata,et al.  The X-ray crystal structure of RNA polymerase from Archaea , 2008, Nature.

[34]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[35]  Jena Yamada,et al.  Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation. , 2008, Structure.

[36]  G. Dougan,et al.  Cooperation Between Translating Ribosomes and RNA Polymerase in Transcription Elongation , 2010, Science.

[37]  Roger D Kornberg,et al.  Structural Basis of Transcription: An RNA Polymerase II-TFIIB Cocrystal at 4.5 Angstroms , 2004, Science.

[38]  Andrew C. R. Martin,et al.  Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif , 2010, Nucleic acids research.

[39]  K. Murakami,et al.  Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution , 2002, Science.

[40]  P. Cramer,et al.  Structure of an archaeal RNA polymerase. , 2008, Journal of molecular biology.

[41]  Jens Michaelis,et al.  Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex , 2009, Nucleic acids research.

[42]  Craig D. Kaplan,et al.  A Dual Interface Determines the Recognition of RNA Polymerase II by RNA Capping Enzyme* , 2010, The Journal of Biological Chemistry.

[43]  H. Handa,et al.  A regulator of transcriptional elongation controls vertebrate neuronal development , 2000, Nature.

[44]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[45]  P. Cramer,et al.  Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. , 2004, Molecular cell.

[46]  Karen Zhou,et al.  Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5 , 2009, Proceedings of the National Academy of Sciences.

[47]  F. Werner,et al.  Cycling through transcription with the RNA polymerase F/E (RPB4/7) complex: structure, function and evolution of archaeal RNA polymerase. , 2011, Research in microbiology.

[48]  R. Landick,et al.  Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. , 2009, Journal of molecular biology.

[49]  D. Bushnell,et al.  Structure of an RNA Polymerase II–TFIIB Complex and the Transcription Initiation Mechanism , 2010, Science.

[50]  I. Artsimovitch,et al.  Functional analysis of Thermus thermophilus transcription factor NusG , 2010, Nucleic acids research.

[51]  Charles Simon Bond,et al.  ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. , 2009, Acta crystallographica. Section D, Biological crystallography.

[52]  P. Cramer,et al.  Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. , 2009, Molecular cell.

[53]  P. Cramer,et al.  Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage , 2003, Cell.

[54]  R. Landick,et al.  A negative elongation factor for human RNA polymerase II inhibits the anti-arrest transcript-cleavage factor TFIIS. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  P. Cramer,et al.  Structure of eukaryotic RNA polymerases. , 2008, Annual review of biophysics.

[56]  D. Luse,et al.  RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit , 2006, Nature Structural &Molecular Biology.

[57]  K. Murakami,et al.  Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex , 2002, Science.

[58]  M. Gottesman,et al.  Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro , 1995, Journal of bacteriology.

[59]  Masaki Yamamoto,et al.  Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein , 2010, Nature.

[60]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A G Leslie,et al.  Biological Crystallography Integration of Macromolecular Diffraction Data , 2022 .