The Deep-Prior Distribution of Relaxation Times

[1]  Alexandra Weiß,et al.  Distribution of Relaxation Times Analysis of High-Temperature PEM Fuel Cell Impedance Spectra , 2017 .

[2]  Bernard A. Boukamp,et al.  Fourier transform distribution function of relaxation times; application and limitations , 2015 .

[3]  D. Thompson,et al.  Distribution of relaxation times analysis and interfacial effects of LSCF fired at different temperatures , 2019, International Journal of Hydrogen Energy.

[4]  A. Gavrilyuk,et al.  The use of Tikhonov regularization method for calculating the distribution function of relaxation times in impedance spectroscopy , 2017, Russian Journal of Electrochemistry.

[5]  Mufu Yan,et al.  A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy , 2016 .

[6]  Joachim Maier,et al.  Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications , 2001 .

[7]  N. C. Murmu,et al.  Effect of Ion Diffusion in Cobalt Molybdenum Bimetallic Sulfide toward Electrocatalytic Water Splitting. , 2019, ACS applied materials & interfaces.

[8]  Reinhard Heckel,et al.  Deep Decoder: Concise Image Representations from Untrained Non-convolutional Networks , 2018, ICLR.

[9]  T. Pauporté,et al.  Insights into the Hole Blocking Layer Effect on the Perovskite Solar Cell Performance and Impedance Response , 2017 .

[10]  Ellen Ivers-Tiffée,et al.  Evaluation of electrochemical impedance spectra by the distribution of relaxation times , 2017 .

[11]  D. Finegan,et al.  Simulated impedance of diffusion in porous media , 2017 .

[12]  H. Schichlein,et al.  Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells , 2002 .

[13]  D. Aurbach,et al.  Use of 1,10-Phenanthroline as an Additive for High-Performance Supercapacitors , 2015 .

[14]  Xin Li,et al.  Deconvolving distribution of relaxation times, resistances and inductance from electrochemical impedance spectroscopy via statistical model selection: Exploiting structural-sparsity regularization and data-driven parameter tuning , 2019, Electrochimica Acta.

[15]  Zhengqiang Pan,et al.  An easy-to-implement multi-point impedance technique for monitoring aging of lithium ion batteries , 2019, Journal of Power Sources.

[16]  A. Sanson,et al.  Understanding the electrochemical behaviour of LSM-based SOFC cathodes. Part I - Experimental and electrochemical , 2017 .

[17]  René R. Sevag Packard,et al.  Ultrasonic Transducer-Guided Electrochemical Impedance Spectroscopy to Assess Lipid-Laden Plaques. , 2016, Sensors and actuators. B, Chemical.

[18]  Yoed Tsur,et al.  ISGP: Impedance Spectroscopy Analysis Using Evolutionary Programming Procedure , 2011 .

[19]  Moses Ender,et al.  Separation of Charge Transfer and Contact Resistance in LiFePO4-Cathodes by Impedance Modeling , 2012 .

[20]  Ting Hei Wan,et al.  Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools , 2015 .

[21]  Louis B. Rall,et al.  Automatic differentiation , 1981 .

[22]  Ellen Ivers-Tiffée,et al.  Combined Deconvolution and CNLS Fitting Approach Applied on the Impedance Response of Technical Ni ∕ 8YSZ Cermet Electrodes , 2008 .

[23]  Pouyan Shafiei Sabet,et al.  Non-invasive investigation of predominant processes in the impedance spectra of high energy lithium-ion batteries with nickel–cobalt–aluminum cathodes , 2018 .

[24]  Daikichi Mukoyama,et al.  Review-Development of Diagnostic Process for Commercially Available Batteries, Especially Lithium Ion Battery, by Electrochemical Impedance Spectroscopy , 2015 .

[25]  N. Menzler,et al.  Impedance characterization of supported oxygen ion conducting electrolytes , 2019, Solid State Ionics.

[26]  Francesco Ciucci,et al.  Modeling electrochemical impedance spectroscopy , 2019, Current Opinion in Electrochemistry.

[27]  J. Ross Macdonald,et al.  Comparison of methods for estimating continuous distributions of relaxation times , 2005 .

[28]  Mohammed B. Effat,et al.  Bayesian and Hierarchical Bayesian Based Regularization for Deconvolving the Distribution of Relaxation Times from Electrochemical Impedance Spectroscopy Data , 2017 .

[29]  Lutz Prechelt,et al.  Early Stopping-But When? , 1996, Neural Networks: Tricks of the Trade.

[30]  C. Yap,et al.  Investigation of physico-chemical processes in lithium-ion batteries by deconvolution of electrochemical impedance spectra , 2017 .

[31]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[32]  U. Westerhoff,et al.  Analysis of Lithium-Ion Battery Models Based on Electrochemical Impedance Spectroscopy , 2016 .

[33]  Dirk Uwe Sauer,et al.  Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application , 2013 .

[34]  Sergei V. Kalinin,et al.  Environmental Gating and Galvanic Effects in Single Crystals of Organic-Inorganic Halide Perovskites. , 2019, ACS applied materials & interfaces.

[35]  Francesco Ciucci,et al.  The Gaussian process distribution of relaxation times: A machine learning tool for the analysis and prediction of electrochemical impedance spectroscopy data , 2020 .

[36]  Yoed Tsur,et al.  Electrochemical impedance spectroscopy of supercapacitors: A novel analysis approach using evolutionary programming , 2014 .

[37]  A. Aguadero,et al.  LaPr3Ni3O9.76 as a candidate solid oxide fuel cell cathode: Role of microstructure and interface structure on electrochemical performance , 2019, APL Materials.

[38]  Dirk Uwe Sauer,et al.  Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel-manganese-cobalt cathodes , 2019, Journal of Power Sources.

[39]  J. Schmidt,et al.  Studies on LiFePO4 as cathode material using impedance spectroscopy , 2011 .

[40]  Tohru S. Suzuki,et al.  Distribution of Relaxation Time Analysis for Non-ideal Immittance Spectrum: Discussion and Progress , 2018, Journal of the Physical Society of Japan.

[41]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[42]  D. Macdonald Reflections on the history of electrochemical impedance spectroscopy , 2006 .

[43]  Christoph Hochenauer,et al.  Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches , 2018, Applied Energy.

[44]  E. Tuncer Electrical properties of polyetherimide thin films: Non-parametric dielectric response analysis with distribution of relaxation times , 2013, The European Physical Journal E.

[45]  J. Ross Macdonald,et al.  Comparison of Parametric and Nonparametric Methods for the Analysis and Inversion of Immittance Data , 2000 .

[46]  Alvarez,et al.  Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. , 1991, Physical review. B, Condensed matter.

[47]  Andrea Vedaldi,et al.  Deep Image Prior , 2017, International Journal of Computer Vision.

[48]  A. A. Moya Electric circuits modelling the low-frequency impedance of ideal ion-exchange membrane systems , 2012 .

[49]  Tom Hörlin,et al.  Deconvolution and maximum entropy in impedance spectroscopy of noninductive systems , 1998 .

[50]  Christoph Hochenauer,et al.  Fractional-order model identification for state of health assessment of solid-oxide fuel cells , 2018 .

[51]  Yoed Tsur,et al.  Analyzing results of impedance spectroscopy using novel evolutionary programming techniques , 2010 .

[52]  Michael Elad,et al.  DeepRED: Deep Image Prior Powered by RED , 2019, ICCV 2019.

[53]  Josef Granwehr,et al.  Two-dimensional impedance data analysis by the distribution of relaxation times , 2017 .

[54]  Michael A. Danzer Generalized Distribution of Relaxation Times Analysis for the Characterization of Impedance Spectra , 2019, Batteries.

[55]  Michal Irani,et al.  “Double-DIP”: Unsupervised Image Decomposition via Coupled Deep-Image-Priors , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[57]  J. Ross Macdonald,et al.  Impedance spectroscopy , 2006, Annals of Biomedical Engineering.

[58]  Su-Moon Park,et al.  Electrochemical impedance spectroscopy. , 2010, Annual review of analytical chemistry.

[59]  Ting Hei Wan,et al.  Optimal Regularization in Distribution of Relaxation Times applied to Electrochemical Impedance Spectroscopy: Ridge and Lasso Regression Methods - A Theoretical and Experimental Study , 2014 .

[60]  C. Hochenauer,et al.  Extensive analysis of large planar SOFC: Operation with humidified methane and carbon monoxide to examine carbon deposition based degradation , 2017 .

[61]  Simon R. Arridge,et al.  Solving inverse problems using data-driven models , 2019, Acta Numerica.

[62]  Zhengqiang Pan,et al.  Impedance characterization of lithium-ion batteries aging under high-temperature cycling: Importance of electrolyte-phase diffusion , 2019, Journal of Power Sources.

[63]  Ross Drummond,et al.  Circuit Synthesis of Electrochemical Supercapacitor Models , 2016, ArXiv.

[64]  F. Ciucci,et al.  Modeling the impedance spectra of mixed conducting thin films with exposed and embedded current collectors. , 2017, Physical chemistry chemical physics : PCCP.

[65]  F. Ciucci,et al.  P-Substituted Ba0.95La0.05FeO3−δ as a Cathode Material for SOFCs , 2019, ACS Applied Energy Materials.

[66]  Mohammed B. Effat,et al.  A general model for the impedance of batteries and supercapacitors: The non-linear distribution of diffusion times , 2019, Electrochimica Acta.

[67]  Ulugbek Kamilov,et al.  Image Restoration Using Total Variation Regularized Deep Image Prior , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[68]  Tong Zhao,et al.  Development of a Portable Electrochemical Impedance Spectroscopy System for Bio-Detection , 2019, IEEE Sensors Journal.

[69]  Bernard A. Boukamp,et al.  Analysis and Application of Distribution of Relaxation Times in Solid State Ionics , 2017 .

[70]  Michael A. Danzer,et al.  Optimized Process Parameters for a Reproducible Distribution of Relaxation Times Analysis of Electrochemical Systems , 2019, Batteries.

[71]  Tobias Kluth,et al.  Regularization by Architecture: A Deep Prior Approach for Inverse Problems , 2019, Journal of Mathematical Imaging and Vision.

[72]  Francesco Ciucci,et al.  Modeling the impedance response of mixed-conducting thin film electrodes. , 2014, Physical chemistry chemical physics : PCCP.

[73]  Sossina M. Haile,et al.  Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria , 2005 .

[74]  Francesco Ciucci,et al.  Analysis of Electrochemical Impedance Spectroscopy Data Using the Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach , 2015 .