Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling

The fabrication and performance of multilayer Al2O3/Ta2O5 Fresnel zone plates in the hard X-ray range and a discussion of possible future developments considering available materials are reported.

[1]  H. Takano,et al.  Development of Multilayer Laue Lenses; (2) Circular Type , 2011 .

[2]  Q. Shen,et al.  Hard x-ray microscopy with Fresnel zone plates reaches 40 nm Rayleigh resolution. , 2008 .

[3]  Jörg Raabe,et al.  Advanced thin film technology for ultrahigh resolution X-ray microscopy. , 2009, Ultramicroscopy.

[4]  P. J. Viccaro,et al.  Coherent hard x‐ray focusing optics and applications , 1992 .

[5]  Elina Färm,et al.  Dense high aspect ratio hydrogen silsesquioxane nanostructures by 100 keV electron beam lithography , 2010, Nanotechnology.

[6]  Weilun Chao,et al.  Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy. , 2009, Optics express.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Gordon E. Brown,et al.  An Overview of Synchrotron Radiation Applications to Low Temperature Geochemistry and Environmental Science , 2002 .

[9]  J. Gilman,et al.  Nanotechnology , 2001 .

[10]  T. Ishikawa,et al.  Single-nanometer focusing of hard x-rays by Kirkpatrick–Baez mirrors , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  J. Cuppoletti Metal, Ceramic and Polymeric Composites for Various Uses , 2011 .

[12]  Yasin Ekinci,et al.  Evaluation of Lab-scale EUV Microscopy using a Table-Top Laser Source , 2011 .

[13]  Massimo Gentili,et al.  High resolution fresnel zone plates for soft x-rays , 1994 .

[14]  Anatoly Snigirev,et al.  High-Resolution 3D Imaging Microscopy Using Hard X-Rays , 2004 .

[15]  Ehrenfried Zschech,et al.  Devices, Materials, and Processes for Nanoelectronics: Characterization with Advanced X‐Ray Techniques Using Lab‐Based and Synchrotron Radiation Sources , 2011 .

[16]  E. Anderson,et al.  Soft X-ray microscopy at a spatial resolution better than 15 nm , 2005, Nature.

[17]  A. G. Michette,et al.  Imaging Properties of Modified Fresnel Zone Plates , 1984 .

[18]  T. Ishikawa,et al.  Breaking the 10 nm barrier in hard-X-ray focusing , 2010 .

[19]  G. Schmahl,et al.  HIGH POWER ZONE PLATES FOR A SOFT X‐RAY MICROSCOPE , 1980 .

[20]  C. Back,et al.  Magnetic vortex core reversal by excitation of spin waves , 2010, Nature communications.

[21]  Roger W. Falcone,et al.  New directions in X-ray microscopy , 2011 .

[22]  B. D. Cook,et al.  Unified Approach to Ultrasonic Light Diffraction , 1967, IEEE Transactions on Sonics and Ultrasonics.

[23]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[24]  Hidekazu Mimura,et al.  One-dimensional Wolter optics with a sub-50 nm spatial resolution. , 2010, Optics letters.

[25]  Rafael Abela,et al.  Observing photochemical transients by ultrafast x-ray absorption spectroscopy. , 2003, Physical review letters.

[26]  Marco Stampanoni,et al.  Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy , 2012, Journal of synchrotron radiation.

[27]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[28]  Qun Shen,et al.  Full-field hard x-ray microscopy below 30 nm: a challenging nanofabrication achievement , 2008, Nanotechnology.

[29]  T. Liese,et al.  Development of laser deposited multilayer zone plate structures for soft X-ray radiation , 2011 .

[30]  Jörg Maser,et al.  Coupled wave description of the diffraction by zone plates with high aspect ratios , 1992 .

[31]  Jörg Maser,et al.  Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses. , 2011, Optics express.

[32]  Wilson K. S. Chiu,et al.  Zone-doubled Fresnel zone plates for high-resolution hard X-ray full-field transmission microscopy , 2012, Journal of synchrotron radiation.

[33]  Stanley R. Sternberg,et al.  Biomedical Image Processing , 1983, Computer.

[34]  Markus A. Weigand,et al.  The X-ray microscopy beamline UE46-PGM2 at BESSY , 2010 .

[35]  A. Nogales,et al.  Applications of synchrotron light to scattering and diffraction in materials and life sciences , 2009 .

[36]  R Lewis,et al.  Medical applications of synchrotron radiation x-rays. , 1997, Physics in medicine and biology.

[37]  Y. Chu,et al.  High-resolution hard-x-ray microscopy using second-order zone-plate diffraction , 2011 .

[38]  Mourad Idir,et al.  Modern developments in X-ray and neutron optics , 2008 .

[39]  Hidekazu Mimura,et al.  Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution. , 2012, Optics express.

[40]  I. Stravinsky,et al.  Gestural Control of Real-Time Concatenative Synthesis in Luna Park Grégory Beller Computer Music , 2011 .

[41]  Janos Kirz,et al.  Phase zone plates for x rays and the extreme uv , 1974 .

[42]  Irina Snigireva,et al.  Refractive x-ray lenses , 2005 .

[43]  J. Lucchesi,et al.  X-ray microscopic studies of the Drosophila dosage compensation complex. , 2000, Journal of structural biology.

[44]  Andrew G. Glen,et al.  APPL , 2001 .

[45]  Mikko Ritala,et al.  Atomic Layer Deposition of Iridium Thin Films , 2004 .

[46]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[47]  C. H. Back,et al.  Magnetic vortex core reversal by excitation with short bursts of an alternating field , 2006, Nature.

[48]  G. Schneider,et al.  Zone plates with high efficiency in high orders of diffraction described by dynamical theory , 1997 .

[49]  Lauri Niinistö,et al.  Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials , 2004 .

[50]  A. Sakdinawat,et al.  Nanoscale X-ray imaging , 2009 .

[51]  D. Attwood Soft X-Rays and Extreme Ultraviolet Radiation , 1999 .

[52]  Christian G. Schroer,et al.  Hard x-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional x-ray microscopes , 2012 .

[53]  Jörg Maser,et al.  Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens , 2008 .

[54]  Christian G. Schroer,et al.  Hard X-ray nanoprobe at beamline P06 at PETRA III , 2010 .

[55]  Andreas Fouras,et al.  The past, present, and future of x-ray technology for in vivo imaging of function and form , 2009 .

[56]  T Salditt,et al.  Phase-contrast x-ray imaging and tomography of the nematode Caenorhabditis elegans , 2012, Physics in medicine and biology.

[57]  C. Schroer Focusing hard x rays to nanometer dimensions using Fresnel zone plates , 2006 .

[58]  H. C. Kang,et al.  Nanometer linear focusing of hard x rays by a multilayer Laue lens. , 2006, Physical review letters.

[59]  S. Rehbein,et al.  Multilayer Fresnel zone plate for soft X-ray microscopy resolves sub-39nm structures. , 2011, Ultramicroscopy.

[60]  Anatoly Snigirev,et al.  X-ray transfocators: focusing devices based on compound refractive lenses , 2010, Journal of synchrotron radiation.