SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY

We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg2 search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05 <z < 1.2 and (2) that the increased red efficiency of the DES camera will significantly improve high-redshift color measurements. The redshift of each supernova with an identified host galaxy will be obtained from spectroscopic observations of the host. A supernova spectrum will be obtained for a subset of the sample, which will be utilized for control studies. In addition, we have investigated the use of combined photometric redshifts taking into account data from both the host and supernova. We have investigated and estimated the likely contamination from core-collapse supernovae based on photometric identification, and have found that a Type Ia supernova sample purity of up to 98% is obtainable given specific assumptions. Furthermore, we present systematic uncertainties due to sample purity, photometric calibration, dust extinction priors, filter-centroid shifts, and inter-calibration. We conclude by estimating the uncertainty on the cosmological parameters that will be measured from the DES supernova data.

[1]  N. S. Philip,et al.  Results from the Supernova Photometric Classification Challenge , 2010, 1008.1024.

[2]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[3]  M. Sullivan,et al.  SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.

[4]  J. Frieman,et al.  Photometric Redshift Error Estimators , 2007, 0711.0962.

[5]  M. Jarvis Wide-field 1-2 GHz research on galaxy evolution - synenergies with multi-wavelenght surveys , 2009 .

[6]  M. Sullivan,et al.  The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.

[7]  R. Nichol,et al.  A MORE GENERAL MODEL FOR THE INTRINSIC SCATTER IN TYPE Ia SUPERNOVA DISTANCE MODULI , 2011, 1107.4631.

[8]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[9]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[10]  R. Nichol,et al.  PHOTOMETRIC ESTIMATES OF REDSHIFTS AND DISTANCE MODULI FOR TYPE Ia SUPERNOVAE , 2010, 1001.0738.

[11]  Classifications of the Host Galaxies of Supernovae, Set III , 2003, astro-ph/0308195.

[12]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[13]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy , 2010, 1010.4040.

[14]  R. Nichol,et al.  THE SDSS-II SUPERNOVA SURVEY: PARAMETERIZING THE TYPE Ia SUPERNOVA RATE AS A FUNCTION OF HOST GALAXY PROPERTIES , 2011, 1108.4923.

[15]  Stephen E. Holland,et al.  An Overview of CCD Development at Lawrence Berkeley National Laboratory , 2002 .

[16]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[17]  R. Ellis,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[18]  J. Sollerman,et al.  The Discovery and Classification of 16 Supernovae at High Redshifts in ELAIS-S1 : the Stockholm VIMOS Supernova Survey II , 2011, 1106.0307.

[19]  Rafe Schindler,et al.  A radiometric all-sky infrared camera (RASICAM) for DES/CTIO , 2010, Astronomical Telescopes + Instrumentation.

[20]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[21]  Adam G. Riess,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 03/07/07 , 2022 .

[22]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[23]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[24]  M. Fukugita,et al.  LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY , 2009, 0905.4125.

[25]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[26]  Melvin M. Varughese,et al.  PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II , 2011, 1111.5328.

[27]  R. Foley,et al.  On the Progenitors of Two Type IIP Supernovae in the Virgo Cluster 1 , 2009 .

[28]  The Evolution of the Galaxy Luminosity Function in the Rest-Frame Blue Band up to z=3.5 , 2003, astro-ph/0306625.

[29]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2010, 1108.3108.

[30]  D. Scolnic,et al.  OPTICAL CROSS-CORRELATION FILTERS: AN ECONOMICAL APPROACH FOR IDENTIFYING SNe Ia AND ESTIMATING THEIR REDSHIFTS , 2009, 0910.0075.

[31]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[32]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[33]  Walter Stuermer,et al.  Characterization of DECam focal plane detectors , 2008, Astronomical Telescopes + Instrumentation.

[34]  P. Nugent,et al.  K‐Corrections and Extinction Corrections for Type Ia Supernovae , 2002, astro-ph/0205351.

[35]  R. Thomas,et al.  A Comparative Study of the Absolute Magnitude Distributions of Supernovae , 2001, astro-ph/0112051.

[36]  Huan Lin,et al.  The CNOC2 Field Galaxy Luminosity Function. I. A Description of Luminosity Function Evolution , 1999, astro-ph/9902249.

[37]  Ryan Chornock,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base , 2010, 1006.4611.

[38]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[39]  Richard Kessler,et al.  PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA , 2011, 1107.5106.

[40]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[41]  John F. Beacom,et al.  Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals , 2007, 0707.0690.

[42]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[43]  Mohan Ganeshalingam,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour , 2010, 1006.4613.

[44]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[45]  Spectra and Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation , 2010, 1004.1711.

[46]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[47]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[48]  M. Smith,et al.  A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.

[49]  M. Wagner,et al.  AN INTENSIVE HUBBLE SPACE TELESCOPE SURVEY FOR z>1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS , 2009, 0908.3928.

[50]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[51]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[52]  Christopher Portier,et al.  Risk factors for childhood leukaemia. Discussion and summary. , 2008, Radiation protection dosimetry.

[53]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[54]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[55]  October I Physical Review Letters , 2022 .

[56]  D. DePoy,et al.  Focal plane detectors for Dark Energy Camera (DECam) , 2010, Astronomical Telescopes + Instrumentation.

[57]  A. Rest,et al.  SPECTROSCOPY OF HIGH-REDSHIFT SUPERNOVAE FROM THE ESSENCE PROJECT: THE FIRST FOUR YEARS , 2005 .

[58]  J. Frieman,et al.  Dark Energy and the Accelerating Universe , 2008, 0803.0982.

[59]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[60]  M. Sullivan,et al.  Photometric calibration of the Supernova Legacy Survey fields , 2006, astro-ph/0610397.