Experimental and numerical investigation of an axisymmetric supersonic jet

A comprehensive study of a steady axisymmetric supersonic jet of CO2, including experiment, theory, and numerical calculation, is presented. The experimental part, based on high-sensitivity Raman spectroscopy mapping, provides absolute density and rotational temperature maps covering the significant regions of the jet: the zone of silence, barrel shock, Mach disk, and subsonic region beyond the Mach disk. The interpretation is based on the quasi-gasdynamic (QGD) system of equations, and its generalization (QGDR) considering the translational–rotational breakdown of thermal equilibrium. QGD and QGDR systems of equations are solved numerically in terms of a finite-difference algorithm with the steady state attained as the limit of a time-evolving process. Numerical results show a good global agreement with experiment, and provide information on those quantities not measured in the experiment, like velocity field, Mach numbers, and pressures. According to the calculation the subsonic part of the jet, downstream of the Mach disk, encloses a low-velocity recirculation vortex ring.

[1]  B. Schmidt,et al.  Zur Form der Verdichtungsstoesse in frei expandierenden Gasstrahlen , 1961 .

[2]  S. Stolte,et al.  Molecular beam diagnostics by Raman scattering , 1981 .

[3]  Maté,et al.  Temperature and density mapping of supersonic jet expansions using linear Raman spectroscopy. , 1996, Physical review letters.

[4]  F. S. Sherman,et al.  The Structure and Utilization of Supersonic Free Jets in Low Density Wind Tunnels , 1965 .

[5]  Katsuhisa Koura,et al.  4 Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave , 1997 .

[6]  Salvador Montero,et al.  Raman spectroscopy of supersonic jets of CO2: Density, condensation, and translational, rotational, and vibrational temperatures , 1998 .

[7]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[8]  R. Campargue Progress in overexpanded supersonic jets and skimmed molecular beams in free-jet zones of silence , 1984 .

[9]  L. Talbot,et al.  Measurement of Shock Wave Thickness by the Electron Beam Fluorescence Method , 1966 .

[10]  Mikhail S. Ivanov,et al.  Free-Flight Experiment and Numerical Simulation for Cold Thruster Plume , 1999 .

[11]  The Solution of the Boltzmann Equation for a Shock Wave using a Restricted Variational Principle , 1954 .

[12]  G. Pham-Van-diep,et al.  Nonequilibrium Molecular Motion in a Hypersonic Shock Wave , 1989, Science.

[13]  F. Tommasini,et al.  Intracavity Raman Scattering from Molecular Beams: Direct Determination of Local Properties in an Expanding Jet Beam , 1976 .

[14]  G. Hagemann,et al.  Status of Low Separation Prediction in Rocket Nozzles. , 1998 .

[15]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[16]  E. P. Muntz,et al.  Some Characteristics of Exhaust Plume Rarefaction , 1970 .

[17]  H. Alsmeyer,et al.  Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam , 1976, Journal of Fluid Mechanics.

[18]  J. G. Parker Rotational and Vibrational Relaxation in Diatomic Gases , 1959 .

[19]  G. Tejeda,et al.  High-Performance Dual Raman Spectrometer , 1997 .

[20]  B. Maté,et al.  Raman Studies of Free Jet Expansion (Diagnostics and Mapping) , 2001 .

[21]  W. Steckelmacher Molecular gas dynamics and the direct simulation of gas flows , 1996 .

[22]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[23]  L. Talbot,et al.  Experimental Study of the Rotational Distribution Function of Nitrogen in a Shock Wave , 1966 .

[24]  S. R. Chakravarthy,et al.  Numerical investigation of separated nozzle flows , 1994 .

[25]  B N Chetverushkin,et al.  Kinetic algorithms for calculating gas dynamic flows , 1986 .

[26]  H. Mott-Smith,et al.  The Solution of the Boltzmann Equation for a Shock Wave , 1951 .