Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 3: SAR studies on the benzylpyrazole segment.

[1]  D. Hazuda,et al.  Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 2: Discovery of potent, selective, and orally bioavailable compounds. , 2004, Bioorganic & medicinal chemistry letters.

[2]  Karen Holmes,et al.  Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 1: Discovery and SAR study of 4-pyrazolylpiperidine side chains. , 2004, Bioorganic & medicinal chemistry letters.

[3]  Terry Kenakin,et al.  Recent progress in discovery of small-molecule CCR5 chemokine receptor ligands as HIV-1 inhibitors. , 2003, Bioorganic & medicinal chemistry.

[4]  B. Fermini,et al.  The impact of drug-induced QT interval prolongation on drug discovery and development , 2003, Nature Reviews Drug Discovery.

[5]  Karen Holmes,et al.  1,3,4 Trisubstituted pyrrolidine CCR5 receptor antagonists bearing 4-aminoheterocycle substituted piperidine side chains. , 2003, Bioorganic & medicinal chemistry letters.

[6]  D. Hazuda,et al.  1,3,4-Trisubstituted pyrrolidine CCR5 receptor antagonists. Part 4: synthesis of N-1 acidic functionality affording analogues with enhanced antiviral activity against HIV. , 2002, Bioorganic & medicinal chemistry letters.

[7]  D. Hazuda,et al.  CCR5 antagonists: bicyclic isoxazolidines as conformationally constrained N-1-substituted pyrrolidines. , 2002, Bioorganic & medicinal chemistry letters.

[8]  D. Hazuda,et al.  Combinatorial synthesis of CCR5 antagonists. , 2001, Bioorganic & medicinal chemistry letters.

[9]  D. Hazuda,et al.  Discovery of human CCR5 antagonists containing hydantoins for the treatment of HIV-1 infection. , 2001, Bioorganic & medicinal chemistry letters.

[10]  D. Hazuda,et al.  1,3,4-Trisubstituted pyrrolidine CCR5 receptor antagonists. Part 2: lead optimization affording selective, orally bioavailable compounds with potent anti-HIV activity. , 2001, Bioorganic & medicinal chemistry letters.

[11]  E A Emini,et al.  Antagonists of the human CCR5 receptor as anti-HIV-1 agents. Part 4: synthesis and structure-activity relationships for 1-[N-(methyl)-N-(phenylsulfonyl)amino]-2-(phenyl)-4-(4-(N-(alkyl)-N-(benzyloxycarbonyl)amino)piperidin-1-yl)butanes. , 2001, Bioorganic & medicinal chemistry letters.

[12]  B. Neustadt,et al.  Piperazine-based CCR5 antagonists as HIV-1 inhibitors. II. Discovery of 1-[(2,4-dimethyl-3-pyridinyl)carbonyl]-4- methyl-4-[3(S)-methyl-4-[1(S)-[4-(trifluoromethyl)phenyl]ethyl]-1-piperazinyl]- piperidine N1-oxide (Sch-350634), an orally bioavailable, potent CCR5 antagonist. , 2001, Journal of medicinal chemistry.

[13]  M. Maccoss,et al.  1,3,4-Trisubstituted pyrrolidine CCR5 receptor antagonists. Part 1: discovery of the pyrrolidine scaffold and determination of its stereochemical requirements. , 2001, Bioorganic & medicinal chemistry letters.

[14]  J A Grobler,et al.  Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. , 2000, Science.

[15]  Cavero,et al.  QT interval prolongation by non-cardiovascular drugs: issues and solutions for novel drug development. , 1999, Pharmaceutical science & technology today.

[16]  O. Nishimura,et al.  A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Buchwald,et al.  A Catalytic Method for the Conversion of Silanes to Stannanes , 1994 .

[18]  Michael S. Saag,et al.  A Short-Term Clinical Evaluation of L-697,661, a Non-Nucleoside Inhibitor of HIV-1 Reverse Transcriptase , 1993 .

[19]  K. Teng,et al.  Palladium-catalyzed reactions of acyl chlorides with (1-alkynyl)tributylstannanes. A convenient synthesis for 1-alkynyl ketones , 1982 .

[20]  D. Hazuda,et al.  1,3,4-Trisubstituted pyrrolidine CCR5 receptor antagonists: modifications of the arylpropylpiperidine side chains. , 2003, Bioorganic & medicinal chemistry letters.

[21]  Hao Wang,et al.  Functional and pharmacological properties of canine ERG potassium channels. , 2003, American journal of physiology. Heart and circulatory physiology.

[22]  E. Corey,et al.  A synthetic method for formyl→ethynyl conversion (RCHO→RCCH or RCCR′) , 1972 .