Visual tracking using locality-constrained linear coding under a particle filtering framework

Visual target tracking has long been a challenging problem because of the variable appearance of the target with changing spatiotemporal factors. Therefore, it is important to design an effective and efficient appearance model for tracking tasks. This study proposes a tracking algorithm based on locality-constrained linear coding (LLC) under a particle filtering framework. A local feature descriptor is presented that can evenly represent the local information of each patch in the tracking region. LLC uses the locality constraints to project each local feature descriptor into its local-coordinate system. Compared with sparse coding, LLC can be performed very quickly for appearance modelling because it has an analytical solution derived by a three-step matrix calculation, and the computational complexity of the proposed tracking algorithm is o ( η × m × n ) . Both quantitative and qualitative experimental results demonstrate that the authors’ proposed algorithm performs favourably against the 10 state-of-the-art trackers on 12 challenging test sequences. However, related experimental results show that the performance of their tracker is not effective enough for small tracking targets owing to a lack of sufficient local region information.

[1]  Xue-Jie Zhang,et al.  Enhanced fast compressive tracking based on adaptive measurement matrix , 2015, IET Comput. Vis..

[2]  Shuai Liu,et al.  A review of visual moving target tracking , 2017, Multimedia Tools and Applications.

[3]  Lei Zhang,et al.  Robust object tracking using semi-supervised appearance dictionary learning , 2015, Pattern Recognit. Lett..

[4]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[5]  Hua Hong-tu,et al.  Robust visual tracking based on product sparse coding , 2015 .

[6]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[7]  Rashid Ansari,et al.  Kernel particle filter for visual tracking , 2005, IEEE Signal Processing Letters.

[8]  Hui Huang,et al.  Robust object tracking via local constrained and online weighted , 2015, Multimedia Tools and Applications.

[9]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Chung-Lin Huang,et al.  Hand gesture recognition using a real-time tracking method and hidden Markov models , 2003, Image Vis. Comput..

[11]  Jie Yang,et al.  Kernelized temporal locality learning for real-time visual tracking , 2017, Pattern Recognit. Lett..

[12]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[13]  Xuelong Li,et al.  Robust Visual Tracking Using Structurally Random Projection and Weighted Least Squares , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[14]  Wei Wei,et al.  Visual Tracking Based on the Adaptive Color Attention Tuned Sparse Generative Object Model , 2015, IEEE Transactions on Image Processing.

[15]  N. H. Ali,et al.  Kalman Filter Tracking , 2014 .

[16]  Lei Zhang,et al.  Fast Compressive Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[18]  Qing Wang,et al.  Transferring Visual Prior for Online Object Tracking , 2012, IEEE Transactions on Image Processing.

[19]  Yue Liu,et al.  Visual Tracking via Sparse and Local Linear Coding , 2015, IEEE Transactions on Image Processing.

[20]  Zhongliang Jing,et al.  Kernel joint visual tracking and recognition based on structured sparse representation , 2016, Neurocomputing.

[21]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[22]  Shengping Zhang,et al.  Robust Visual Tracking Using an Effective Appearance Model Based on Sparse Coding , 2012, TIST.

[23]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[24]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Natasha Gelfand,et al.  SURFTrac: Efficient tracking and continuous object recognition using local feature descriptors , 2009, CVPR.

[26]  Kaihua Zhang,et al.  Real-time visual tracking via online weighted multiple instance learning , 2013, Pattern Recognit..

[27]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Shengping Zhang,et al.  Sparse coding based visual tracking: Review and experimental comparison , 2013, Pattern Recognit..

[30]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[31]  Ning Sun,et al.  Robust object tracking based on local region sparse appearance model , 2016, Neurocomputing.

[32]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[33]  Shengping Zhang,et al.  Robust visual tracking based on online learning sparse representation , 2013, Neurocomputing.

[34]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Yuan Xie,et al.  Global Coupled Learning and Local Consistencies Ensuring for sparse-based tracking , 2015, Neurocomputing.

[38]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Xuelong Li,et al.  A Biologically Inspired Appearance Model for Robust Visual Tracking , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[41]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[42]  Yihong Gong,et al.  Nonlinear Learning using Local Coordinate Coding , 2009, NIPS.

[43]  Junzhou Huang,et al.  Robust Visual Tracking Using Local Sparse Appearance Model and K-Selection , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.