Surface chemistry of group IB metals and related oxides.

Understanding the surface chemistry of solid catalysts is of great importance for the rational design of structures of advanced catalysts; however, long-term challenges remain due to the complex and non-uniform catalyst structures and the lack of suitable characterization techniques. Surface chemistry studies of single-crystal-based model catalysts with well-defined surface structures under ultra-high vacuum conditions have been developed as one approach, but the so-called materials gap and pressure gap are sometimes encountered when the acquired understanding is extended to the industrial reaction conditions. Recently emerging uniform catalytic nanocrystals with well-defined surface structures consist of a novel type of model catalysts, whose surface chemistry can be studied under the same conditions as the industrial reaction conditions; meanwhile, the surface chemistry of powder catalysts can be studied to some extent due to the development of advanced characterization techniques. Group IB metals (Cu, Ag, Au) and related oxides constitute a class of catalysts with unique catalytic properties and wide catalytic applications. We herein review the recent progress in the surface chemistry of Group IB metals and related oxides from single-crystal-based model catalysts to nanocrystal-based model catalysts and powder catalysts in an attempt to summarize the commonalities and to discuss the differences among the surface chemistry acquired from the catalysts with different levels of complexity. The surface chemistry of Group IB metals and related oxides is compared and correlated to their catalytic performance. A concept of model catalysts from single crystals to nanocrystals is prospected for the investigation of the surface chemistry of solid catalysts to approach industrial reaction conditions as closely as possible.

[1]  Van Santen,et al.  Ethylene epoxidation on silver(110): the role of subsurface oxygen , 2001 .

[2]  B. Gates,et al.  Catalysis by gold dispersed on supports: the importance of cationic gold. , 2008, Chemical Society reviews.

[3]  Zhiquan Jiang,et al.  Reaction heat-driven CO2 desorption during CO oxidation on Au(997) at low temperatures , 2016, Science China Chemistry.

[4]  Ali Alavi,et al.  Structures and thermodynamic phase transitions for oxygen and silver oxide phases on Ag{1 1 1} , 2003 .

[5]  S. Carabineiro,et al.  Reactions of small molecules on gold single crystal surfaces , 2010 .

[6]  K. C. Waugh,et al.  The activity and state of the copper surface in methanol synthesis catalysts , 1986 .

[7]  Weixin Huang Crystal Plane-Dependent Surface Reactivity and Catalytic Property of Oxide Catalysts Studied with Oxide Nanocrystal Model Catalysts , 2013, Topics in Catalysis.

[8]  J. Nørskov,et al.  Methanol Partial Oxidation on Ag(1 1 1) from First Principles , 2016 .

[9]  Avelino Corma,et al.  Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. , 2004, Angewandte Chemie.

[10]  O. Vaughan,et al.  Copper as a selective catalyst for the epoxidation of propene , 2005 .

[11]  Robert J. Davis,et al.  Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol , 2007 .

[12]  J. Lauterbach,et al.  Promoter-induced morphological changes of ag catalysts for ethylene epoxidation , 2009 .

[13]  M. Bäumer,et al.  Metal deposits on well-ordered oxide films , 1999 .

[14]  S. Linic,et al.  Formation of a stable surface oxametallacycle that produces ethylene oxide. , 2002, Journal of the American Chemical Society.

[15]  M. Schmal,et al.  Study of the active phase of silver catalysts for ethylene epoxidation , 2007 .

[16]  Shanshan Lv,et al.  Influences of CeO2 microstructures on the structure and activity of Au/CeO2/SiO2 catalysts in CO oxidation , 2009 .

[17]  J. Lavalley,et al.  An in situ FT-IR study of adsorbed species on a Cu-ZnAl2O4 methanol catalyst under 1 MPa pressure and at 525 K: effect of the H2/CO/CO2 feed stream composition , 1989 .

[18]  Weixin Huang,et al.  Proton-Transfer-Connected Elementary Surface Reaction Network for Low-Temperature CO Oxidation Catalyzed by Metal-Oxide Nanocatalysts , 2016 .

[19]  A. Karelovic,et al.  The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts , 2015 .

[20]  C. Deranlot,et al.  CO chemisorption on Au(1 1 0) investigated under elevated pressures by polarized reflection absorption infrared spectroscopy and scanning tunneling microscopy , 2002 .

[21]  D. Chadwick,et al.  Kinetics and modelling of dimethyl ether synthesis from synthesis gas , 1999 .

[22]  F. Illas,et al.  Influence of step sites in the molecular mechanism of the water gas shift reaction catalyzed by copper , 2009 .

[23]  M. Rossi,et al.  Gas phase oxidation of alcohols to aldehydes or ketones catalysed by supported gold. , 2003, Chemical communications.

[24]  Qing Hua,et al.  Catalytically active structures of SiO2-supported Au nanoparticles in low-temperature CO oxidation , 2013 .

[25]  Junko N. Kondo,et al.  Infrared Study of CO Adsorption and Oxidation over Au/Al2O3 Catalyst at 150 K , 2001 .

[26]  G. U. Kulkarni,et al.  Size-dependent changes in the electronic structure of metal clusters as investigated by scanning tunneling spectroscopy , 1998 .

[27]  J. Flege,et al.  Nanopattering in CeOx/Cu(111): A New Type of Surface Reconstruction and Enhancement of Catalytic Activity. , 2012, The journal of physical chemistry letters.

[28]  T. Fujitani,et al.  The difference in the active sites for CO2 and CO hydrogenations on Cu/ZnO-based methanol synthesis catalysts , 2001 .

[29]  G. Hutchings,et al.  Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts , 2006, Science.

[30]  Edvin Lundgren,et al.  CO adsorption on Au(310) and Au(321): 6-Fold coordinated gold atoms , 2009 .

[31]  Hieu A. Doan,et al.  The critical role of water at the gold-titania interface in catalytic CO oxidation , 2014, Science.

[32]  G. Henkelman,et al.  Water-enhanced low-temperature CO oxidation and isotope effects on atomic oxygen-covered Au(111). , 2008, Journal of the American Chemical Society.

[33]  Yadong Li,et al.  Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes , 2006 .

[34]  G. Hutchings Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts , 1985 .

[35]  Weixin Huang,et al.  Surface reaction network of CO oxidation on CeO2/Au(110) inverse model catalysts. , 2016, Physical chemistry chemical physics : PCCP.

[36]  Robert J. Davis,et al.  Oxygen-exchange reactions during CO oxidation over titania- and alumina-supported Au nanoparticles , 2006 .

[37]  S. C. Parker,et al.  The kinetics of CO oxidation by adsorbed oxygen on well‐defined gold particles on TiO2(110) , 1999 .

[38]  D. Stacchiola,et al.  Redox-Mediated Reconstruction of Copper during Carbon Monoxide Oxidation , 2014 .

[39]  C. Mullins,et al.  Surface Chemistry of Methanol on Clean and Atomic Oxygen Pre-Covered Au(111) , 2008 .

[40]  R. Madix,et al.  Broensted basicity of atomic oxygen on the gold(110) surface: reactions with methanol, acetylene, water, and ethylene , 1987 .

[41]  S. Linic,et al.  Ethylene epoxidation on Ag: identification of the crucial surface intermediate by experimental and theoretical investigation of its electronic structure. , 2004, Angewandte Chemie.

[42]  S. Linic,et al.  Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State , 2013, Science.

[43]  R. Madix,et al.  The oxidation of methanol on a silver (110) catalyst , 1978 .

[44]  Qinghong Zhang,et al.  Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs + modification , 2013 .

[45]  Jinlong Gong Structure and surface chemistry of gold-based model catalysts. , 2012, Chemical reviews.

[46]  C. Mullins,et al.  Formation of molecularly chemisorbed oxygen on TiO2-supported gold nanoclusters and Au(111) from exposure to an oxygen plasma jet. , 2005, The journal of physical chemistry. B.

[47]  Manuel Pérez,et al.  Water-gas shift reaction on a highly active inverse CeOx/Cu111 catalyst: unique role of ceria nanoparticles. , 2009, Angewandte Chemie.

[48]  R. M. Lambert,et al.  Why copper is intrinsically more selective than silver in alkene epoxidation: ethylene oxidation on Cu(111) versus Ag(111). , 2005, Journal of the American Chemical Society.

[49]  H. Ogasawara,et al.  Hydroxyl-Induced Wetting of Metals by Water at Near-Ambient Conditions , 2007 .

[50]  M. Haruta,et al.  Vital role of moisture in the catalytic activity of supported gold nanoparticles. , 2004, Angewandte Chemie.

[51]  D. Goodman,et al.  Modeling heterogeneous catalysts: metal clusters on planar oxide supports , 2000 .

[52]  Ping Liu,et al.  Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 , 2014, Science.

[53]  M. Bäumer,et al.  Size and Support Effects for CO Adsorption on Gold Model Catalysts , 2003 .

[54]  X. Zeng,et al.  Water-Promoted O-2 Dissociation on Small-Sized Anionic Gold Clusters , 2012 .

[55]  Ping Liu,et al.  CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane , 2013 .

[56]  O. Lopez-Acevedo,et al.  Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. , 2010, Nature chemistry.

[57]  G. Hutchings,et al.  Characterisation of gold catalysts. , 2016, Chemical Society reviews.

[58]  P. Kent,et al.  Role of Hydroxyl Groups on the Stability and Catalytic Activity of Au Clusters on a Rutile Surface , 2011 .

[59]  J. G. Serafin,et al.  Surface science and the silver-catalyzed epoxidation of ethylene: an industrial perspective , 1998 .

[60]  R. Madix,et al.  The oxidation of carbon monoxide on the Au(110) surface , 1987 .

[61]  R. Schlögl,et al.  The Dynamic Restructuring of Electrolytic Silver during the Formaldehyde Synthesis Reaction , 1998 .

[62]  P. Hollins,et al.  Adsorption of carbon monoxide on the gold(332) surface , 1996 .

[63]  A. Corma,et al.  CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. , 2005, Angewandte Chemie.

[64]  Jinlong Yang,et al.  Morphological evolution of Cu2O nanocrystals in an acid solution: stability of different crystal planes. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[65]  Hartford Eh,et al.  Photoelectron spectroscopy of single-size Au clusters collected on a substrate. , 1988 .

[66]  Qinghong Zhang,et al.  Copper-catalyzed propylene epoxidation by molecular oxygen: Superior catalytic performances of halogen-free K+-modified CuOx/SBA-15 , 2006 .

[67]  Rutger A. van Santen,et al.  Ethylene Epoxidation Catalyzed by Silver Oxide , 2011 .

[68]  Masatake Haruta,et al.  Spiers Memorial Lecture. Role of perimeter interfaces in catalysis by gold nanoparticles. , 2011, Faraday discussions.

[69]  S. Schroeder,et al.  Adsorption of carbon monoxide on Au(1 1 0)-(1 × 2) , 2003 .

[70]  Matthew Neurock,et al.  Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst , 2011, Science.

[71]  Ejm Emiel Hensen,et al.  Ethanol dehydrogenation by gold catalysts: The effect of the gold particle size and the presence of oxygen , 2009 .

[72]  Joel B. Varley,et al.  CO and CO2 Hydrogenation to Methanol Calculated Using the BEEF-vdW Functional , 2013, Catalysis Letters.

[73]  Geoffrey I N Waterhouse,et al.  Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst , 2004 .

[74]  Shanshan Lv,et al.  Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts : Some mechanism insights , 2008 .

[75]  R. Deka,et al.  Catalytic Activities of Au6, Au 6−, and Au 6+ Clusters for CO oxidation: A density functional study , 2014 .

[76]  C. Campbell,et al.  Microkinetic modeling of ethylene oxidation over silver , 2004 .

[77]  Xiaohong Xu,et al.  Aerobic Oxidation of d-Glucose on Support-Free Nanoporous Gold , 2008 .

[78]  A. Nagy,et al.  High temperature partial oxidation reactions over silver catalysts , 1999 .

[79]  M. Bäumer,et al.  Gold catalysts: nanoporous gold foams. , 2006, Angewandte Chemie.

[80]  L. Vattuone,et al.  Role of steps and of terrace width in gas-surface interaction: O2/Ag(410). , 2001, Physical review letters.

[81]  R. M. Lambert,et al.  Ultraselective Epoxidation of Butadiene on Cu{111} and the Effects of Cs Promotion , 2000 .

[82]  C. Friend,et al.  Efficient CO oxidation at low temperature on Au(111). , 2006, The journal of physical chemistry. B.

[83]  O. Vaughan,et al.  Efficient epoxidation of a terminal alkene containing allylic hydrogen atoms: trans-methylstyrene on Cu{111}. , 2005, Journal of the American Chemical Society.

[84]  B. Hammer,et al.  Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). , 2004, The Journal of chemical physics.

[85]  R. Whetten,et al.  Low-temperature activation of molecular oxygen by gold clusters: a stoichiometric process correlated to electron affinity , 2000 .

[86]  A. Michaelides,et al.  Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides , 2015, 1508.01005.

[87]  I. Metcalfe,et al.  Methanol Synthesis from CO/CO2/H2over Cu/ZnO/Al2O3at Differential and Finite Conversions , 1998 .

[88]  L. Rossi,et al.  Clean preparation of methyl esters in one-step oxidative esterification of primary alcohols catalyzed by supported gold nanoparticles , 2009 .

[89]  M. Bäumer,et al.  Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature , 2010, Science.

[90]  A. Corma,et al.  Stabilization of cationic gold species on Au/CeO2 catalysts under working conditions , 2006 .

[91]  S. Pennycook,et al.  Oxygen chemisorption on Au nanoparticles , 2003 .

[92]  G. Somorjai,et al.  Reaction of CO with Preadsorbed Oxygen on Low-Index Copper Surfaces: An Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study , 2015 .

[93]  R. Prasad,et al.  A Review on CO Oxidation Over Copper Chromite Catalyst , 2012 .

[94]  S. Oyama,et al.  Direct Oxidation of Propylene to Propylene Oxide with Molecular Oxygen: A Review , 2015 .

[95]  Zhiquan Jiang,et al.  Size-Dependent Reaction Pathways of Low-Temperature CO Oxidation on Au/CeO2 Catalysts , 2015 .

[96]  K. Domen,et al.  Scanning tunneling microscopy studies of oxygen adsorption on Cu(111) , 2001 .

[97]  Matthias Scheffler,et al.  Experimental and theoretical study of oxygen adsorption structures on Ag(111) , 2009, 0904.3734.

[98]  Jinlong Yang,et al.  Shape-Dependent Reducibility of Cuprous Oxide Nanocrystals , 2010 .

[99]  Fenglin Liao,et al.  Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials' interface in selective hydrogenation of CO2 to CH3OH. , 2011, Angewandte Chemie.

[100]  C. Friend,et al.  Activated metallic gold as an agent for direct methoxycarbonylation. , 2011, Journal of the American Chemical Society.

[101]  R. Schalek,et al.  Oxygen-induced restructuring with release of gold atoms from Au(111) , 2005 .

[102]  Y. D. Kim,et al.  Size-selectivity in the oxidation behaviors of au nanoparticles. , 2006, Angewandte Chemie.

[103]  Gao Qing Lu,et al.  Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2 , 2003 .

[104]  Ping Liu,et al.  Fundamental studies of methanol synthesis from CO(2) hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). , 2010, Physical chemistry chemical physics : PCCP.

[105]  J. Dumesic,et al.  Gold-nanotube membranes for the oxidation of CO at gas-water interfaces. , 2004, Angewandte Chemie.

[106]  R. Schlögl,et al.  Adsorbate induced vacancy formation on silver surfaces. , 2014, Physical chemistry chemical physics : PCCP.

[107]  C. Campbell,et al.  Kinetics and mechanism of the water-gas shift reaction catalysed by the clean and Cs-promoted Cu(110) surface: a comparison with Cu(111) , 1990 .

[108]  Erin V. Iski,et al.  Thermally Selective Formation of Subsurface Oxygen in Ag(111) and Consequent Surface Structure , 2016 .

[109]  O. Vaughan,et al.  Critical influence of adsorption geometry in the heterogeneous epoxidation of "allylic" alkenes: structure and reactivity of three phenylpropene isomers on Cu(111). , 2005, Journal of the American Chemical Society.

[110]  Matthew Neurock,et al.  Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis , 2010, Science.

[111]  Stefano Agnoli,et al.  Importance of the metal-oxide interface in catalysis: in situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. , 2013, Angewandte Chemie.

[112]  R. Behm,et al.  Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts. , 2014, Accounts of chemical research.

[113]  M. G. Mason Electronic structure of supported small metal clusters , 1983 .

[114]  R. Madix,et al.  Mesoscopic restructuring and mass transport of metal atoms during reduction of the Ag(111)-p(4x4)-O surface with CO. , 2007, The Journal of chemical physics.

[115]  B. Koel,et al.  Chemisorbed Oxygen on Au(111) Produced by a Novel Route: Reaction in Condensed Films of NO2 + H2O , 1998 .

[116]  C. Friend,et al.  From model studies on Au(1 1 1) to working conditions with unsupported nanoporous gold catalysts: Oxygen-assisted coupling reactions , 2013 .

[117]  Richard G. Herman,et al.  Catalytic synthesis of methanol from COH2: I. Phase composition, electronic properties, and activities of the Cu/ZnO/M2O3 catalysts , 1979 .

[118]  Weixin Huang,et al.  Morphology-dependent surface chemistry and catalysis of CeO2 nanocrystals , 2014 .

[119]  G. Somorjai,et al.  Structural Changes of Cu(110) and Cu(110)-(2 × 1)-O Surfaces under Carbon Monoxide in the Torr Pressure Range Studied with Scanning Tunneling Microscopy and Infrared Reflection Absorption Spectroscopy , 2016 .

[120]  A. Pucci,et al.  Low-Temperature Adsorption of Carbon Monoxide on Gold Surfaces: IR Spectroscopy Uncovers Different Adsorption States on Pristine and Rough Au(111) , 2015 .

[121]  Dionisios G. Vlachos,et al.  Microkinetic Modeling for Water-Promoted CO Oxidation, Water−Gas Shift, and Preferential Oxidation of CO on Pt , 2004 .

[122]  Yong Cao,et al.  Supported gold catalysis: from small molecule activation to green chemical synthesis. , 2014, Accounts of chemical research.

[123]  D. Stacchiola Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems. , 2015, Accounts of chemical research.

[124]  C. Friend,et al.  Transient hydroxyl formation from water on oxygen-covered Au(111). , 2008, The Journal of chemical physics.

[125]  M. S. Chen,et al.  The Structure of Catalytically Active Gold on Titania , 2004, Science.

[126]  Shanshan Lv,et al.  Restructuring-induced activity of SiO(2)-supported large au nanoparticles in low-temperature CO oxidation. , 2008, Chemistry.

[127]  G. Kästle,et al.  Oxidation-Resistant Gold-55 Clusters , 2002, Science.

[128]  Richard G. Herman,et al.  Catalytic synthesis of methanol from COH2: IV. The effects of carbon dioxide , 1982 .

[129]  K. Hadjiivanov,et al.  State of gold on an Au/Al2O3 catalyst subjected to different pre-treatments: An FTIR study , 2006 .

[130]  M. Harsdorff,et al.  Investigation of gold clusters with photoelectron spectroscopy , 1988 .

[131]  M. Centeno,et al.  Surface Dynamics of Au/CeO2 Catalysts during CO Oxidation , 2007 .

[132]  Weixin Huang,et al.  Probing Surface Structures of CeO2, TiO2, and Cu2O Nanocrystals with CO and CO2 Chemisorption , 2016 .

[133]  E. Ferroni,et al.  Chemisorption of oxygen on the silver (111) surface , 1974 .

[134]  N. Saliba,et al.  Adsorption of oxygen on Au(111) by exposure to ozone , 1998 .

[135]  Junfa Zhu,et al.  Direct XPS Evidence for Charge Transfer from a Reduced Rutile TiO2(110) Surface to Au Clusters , 2007 .

[136]  M Schmid,et al.  Structure of Ag(111)-p(4 x 4)-O: no silver oxide. , 2006, Physical review letters.

[137]  F. Tao,et al.  In Situ Studies of Chemistry and Structure of Materials in Reactive Environments , 2011, Science.

[138]  B. Haynes,et al.  Methanol and Methoxide Decomposition on Silver , 2007 .

[139]  Jinlong Yang,et al.  Hydroxyls-induced oxygen activation on inert Au nanoparticles for low-temperature CO oxidation , 2011 .

[140]  H. Freund,et al.  Surface chemistry of catalysis by gold , 2004 .

[141]  R. A. Santen,et al.  The Mechanism of Ethylene Epoxidation Catalysis , 2013, Catalysis Letters.

[142]  T. Tanabe,et al.  Infrared Reflection Absorption Study of Carbon Monoxide Adsorbed on Submonolayer Fe-Covered Cu(100), (110), and (111) Bimetallic Surfaces , 2003 .

[143]  Yunsheng Ma,et al.  Adsorption and Surface Reaction of NO2 on a Stepped Au(997) Surface: Enhanced Reactivity of Low-Coordinated Au Atoms , 2012 .

[144]  B. Koel,et al.  CO adsorption and reaction on clean and oxygen-covered Au(211) surfaces. , 2006, The journal of physical chemistry. B.

[145]  Malte Behrens,et al.  Heterogeneous catalysis of CO₂ conversion to methanol on copper surfaces. , 2014, Angewandte Chemie.

[146]  Z. G. Liu,et al.  Hydrogenation of CO2 to Methanol on CeOx/Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal–Oxide Interface and Importance of Ce3+ Sites , 2016 .

[147]  Harold H. Kung,et al.  Supported Au catalysts for low temperature CO oxidation , 2003 .

[148]  Suljo Linic,et al.  Construction of a reaction coordinate and a microkinetic model for ethylene epoxidation on silver from DFT calculations and surface science experiments , 2003 .

[149]  J. Rodríguez,et al.  In situ imaging of Cu2O under reducing conditions: formation of metallic fronts by mass transfer. , 2013, Journal of the American Chemical Society.

[150]  L. Giordano,et al.  Charge-induced formation of linear Au clusters on thin MgO films: Scanning tunneling microscopy and density-functional theory study , 2008 .

[151]  R. Behm,et al.  Active oxygen on a Au/TiO2 catalyst: formation, stability, and CO oxidation activity. , 2011, Angewandte Chemie.

[152]  A. Corma,et al.  Increasing the number of oxygen vacancies on TiO2 by doping with iron increases the activity of supported gold for CO oxidation. , 2007, Chemistry.

[153]  B. Eren,et al.  A study of the O/Ag(111) system with scanning tunneling microscopy and x-ray photoelectron spectroscopy at ambient pressures , 2016 .

[154]  Huizhi Bao,et al.  Crystal-plane-controlled surface restructuring and catalytic performance of oxide nanocrystals. , 2011, Angewandte Chemie.

[155]  G. Chinchen,et al.  Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of14C-labelled reactants , 1987 .

[156]  R. Madix,et al.  A scanning tunneling microscopy study of the oxidation of CO on Cu(110) at 400 K: site specificity and reaction kinetics , 1996 .

[157]  M. Ojeda,et al.  Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters , 2012 .

[158]  M. Bäumer,et al.  CO oxidation on nanoporous gold: A combined TPD and XPS study of active catalysts , 2013 .

[159]  Lin-Wang Wang,et al.  Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption , 2016, Science.

[160]  Qinghong Zhang,et al.  Cu(I)-Catalyzed Epoxidation of Propylene by Molecular Oxygen , 2008 .

[161]  B. Koel,et al.  Chemisorption of high coverages of atomic oxygen on the Pt(111), Pd(111), and Au(111) surfaces , 1990 .

[162]  A. Knop‐Gericke,et al.  Ethylene Epoxidation over Silver Catalysts , 2011 .

[163]  Huaxing Sun,et al.  Anchoring highly active gold nanoparticles on SiO2 by CoOx additive , 2007 .

[164]  M. Bäumer,et al.  Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. , 2012, Angewandte Chemie.

[165]  S. Schroeder,et al.  Spontaneous and electron-induced adsorption of oxygen on Au(110)-(1 × 2) , 2002 .

[166]  R. Schlögl,et al.  On the nature of the active state of silver during catalytic oxidation of methanol , 1993 .

[167]  T. Jacob,et al.  Surface chemistry of Ag particles: identification of oxide species by aberration-corrected TEM and by DFT calculations. , 2008, Angewandte Chemie.

[168]  S. Linic,et al.  Control of ethylene epoxidation selectivity by surface oxametallacycles. , 2003, Journal of the American Chemical Society.

[169]  C. Mullins,et al.  Water activated by atomic oxygen on Au(111) to oxidize CO at low temperatures. , 2006, Journal of the American Chemical Society.

[170]  H. Voge,et al.  Catalytic Oxidation of Olefins , 1967 .

[171]  J. Hanson,et al.  Water-gas shift activity of Cu surfaces and Cu nanoparticles supported on metal oxides , 2009 .

[172]  Andrew A. Peterson,et al.  Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces , 2011 .

[173]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[174]  Xue-qing Gong,et al.  Catalytic role of metal oxides in gold-based catalysts: a first principles study of CO oxidation on TiO2 supported Au. , 2003, Physical review letters.

[175]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[176]  C. Mullins,et al.  Low temperature CO oxidation on Au(111) and the role of adsorbed water , 2007 .

[177]  J. Haubrich,et al.  Vapour-phase gold-surface-mediated coupling of aldehydes with methanol. , 2010, Nature chemistry.

[178]  M. Haruta,et al.  Effect of Impurity and Pretreatment Conditions on the Catalytic Activity of Au Powder for CO Oxidation , 2004 .

[179]  K. Christmann,et al.  Oxidation of carbon monoxide over Au(1 1 0)-(1 × 2) , 2004 .

[180]  F. Zaera Shape-controlled nanostructures in heterogeneous catalysis. , 2013, ChemSusChem.

[181]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.

[182]  Charles T. Campbell,et al.  Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties , 1997 .

[183]  R. Behm,et al.  Reactive oxygen on a Au/TiO2 supported catalyst , 2009 .

[184]  F. Meunier Mixing copper nanoparticles and ZnO nanocrystals: a route towards understanding the hydrogenation of CO2 to methanol? , 2011, Angewandte Chemie.

[185]  Ping Liu,et al.  CO2 Activation and Methanol Synthesis on Novel Au/TiC and Cu/TiC Catalysts. , 2012, The journal of physical chemistry letters.

[186]  Dong Wu,et al.  A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties , 1997 .

[187]  Robert Schlögl,et al.  The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu‐Based Catalysts , 2015 .

[188]  T. Risse,et al.  Gold supported on thin oxide films: from single atoms to nanoparticles. , 2008, Accounts of chemical research.

[189]  B. Koel,et al.  Oxygen adsorption and oxidation reactions on Au(2 1 1) surfaces: Exposures using O 2 at high pressures and ozone (O 3 ) in UHV , 2006 .

[190]  C. Mullins,et al.  Selective oxidation of ethanol to acetaldehyde on gold. , 2008, Journal of the American Chemical Society.

[191]  M. Haruta,et al.  Gas-phase propene epoxidation over coinage metal catalysts , 2011, Research on Chemical Intermediates.

[192]  M. Barteau,et al.  Investigation of Ethylene Oxide on Clean and Oxygen-Covered Ag(110) Surfaces , 2009 .

[193]  A. Corma,et al.  Mechanism of selective alcohol oxidation to aldehydes on gold catalysts: Influence of surface roughness on reactivity , 2011 .

[194]  M. Mavrikakis,et al.  Adsorption and Dissociation of O2 on Gold Surfaces: Effect of Steps and Strain , 2003 .

[195]  C. Campbell,et al.  Adsorption of oxygen and hydrogen on Au(110)-(1 × 2) , 1986 .

[196]  E. Kaxiras,et al.  Theoretical Study of O-Assisted Selective Coupling of Methanol on Au(111) , 2011 .

[197]  Ping Liu,et al.  Stabilization of catalytically active Cu⁺ surface sites on titanium-copper mixed-oxide films. , 2014, Angewandte Chemie.

[198]  Marcel Liauw,et al.  Formaldehyde synthesis from methanol over silver catalysts , 2003 .

[199]  Manos Mavrikakis,et al.  Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation , 2011 .

[200]  S. Linic,et al.  Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts. , 2008, Journal of the American Chemical Society.

[201]  M. Beyer,et al.  Very low rate constants of bimolecular CO adsorption on anionic gold clusters: Implications for catalytic activity , 2003 .

[202]  Robert Schlögl,et al.  Combined in-situ XPS and PTRMS Study of Ethylene Epoxidation over Silver , 2006 .

[203]  S. Schroeder,et al.  Oxygen chemisorption on Au(1 1 0)-(1 × 2) I. Thermal desorption measurements , 2003 .

[204]  G. Ertl Reactions at surfaces: from atoms to complexity (Nobel Lecture). , 2008, Angewandte Chemie.

[205]  C. Friend,et al.  Unraveling molecular transformations on surfaces: a critical comparison of oxidation reactions on coinage metals. , 2008, Chemical Society reviews.

[206]  R. Schlögl,et al.  Insights into the Electronic Structure of the Oxygen Species Active in Alkene Epoxidation on Silver , 2015 .

[207]  Ilia Platzman,et al.  Oxidation of Polycrystalline Copper Thin Films at Ambient Conditions , 2008 .

[208]  C. Friend,et al.  Predicting gold-mediated catalytic oxidative-coupling reactions from single crystal studies. , 2014, Accounts of chemical research.

[209]  Rajender S Varma,et al.  Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. , 2016, Chemical reviews.

[210]  L. Giordano,et al.  Tailoring the interaction strength between gold particles and silica thin films via work function control. , 2009, Physical review letters.

[211]  J. Yates,et al.  Formation, Migration, and Reactivity of Au-CO Complexes on Gold Surfaces. , 2016, Journal of the American Chemical Society.

[212]  D. Goodman,et al.  Catalytically active gold: from nanoparticles to ultrathin films. , 2006, Accounts of chemical research.

[213]  Junji Nakamura,et al.  On the Issue of the Active Site and the Role of ZnO in Cu/ZnO Methanol Synthesis Catalysts , 2003 .

[214]  J. Nørskov,et al.  The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst , 2004 .

[215]  Influence of the cluster dimensionality on the binding behavior of CO and O2 on Au13. , 2012, The Journal of chemical physics.

[216]  C. Mullins,et al.  Evidence for molecularly chemisorbed oxygen on TiO2 supported gold nanoclusters and Au(111). , 2004, Journal of the American Chemical Society.

[217]  Marisa C. Kozlowski,et al.  Aerobic copper-catalyzed organic reactions. , 2013, Chemical reviews.

[218]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[219]  A. Bell,et al.  In Situ Infrared Study of Methanol Synthesis from H2/CO over Cu/SiO2and Cu/ZrO2/SiO2 , 1997 .

[220]  Dang Sheng Su,et al.  Titania Morphology‐Dependent Gold–Titania Interaction, Structure, and Catalytic Performance of Gold/Titania Catalysts , 2015 .

[221]  J. Fletchera,et al.  A review of the use of gold catalysts in selective hydrogenation reactions Lynsey McEwana , 2010 .

[222]  Y. S. Hoo,et al.  Adsorbate-driven morphological changes of a gold surface at low temperatures. , 2008, Journal of the American Chemical Society.

[223]  R. Madix,et al.  The adsorption of oxygen on gold , 1984 .

[224]  L. Luo,et al.  Effect of oxygen gas pressure on orientations of Cu2O nuclei during the initial oxidation of Cu(100), (110) and (111) , 2012 .

[225]  Gabor A. Somorjai,et al.  Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. , 2009, Journal of the American Chemical Society.

[226]  B. D. Kay,et al.  The influence of adsorbate–absorbate hydrogen bonding in molecular chemisorption: NH3, HF, and H2O on Au(111) , 1989 .

[227]  Hyuck-Mo Lee,et al.  CO oxidation mechanism on CeO(2)-supported Au nanoparticles. , 2012, Journal of the American Chemical Society.

[228]  Xiaohong Xu,et al.  Low temperature CO oxidation over unsupported nanoporous gold. , 2007, Journal of the American Chemical Society.

[229]  Aiqin Wang,et al.  Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support , 2006 .

[230]  R. Schlögl,et al.  The Nature of Electrophilic and Nucleophilic Oxygen Adsorbed on Silver , 2003 .

[231]  G. Somorjai,et al.  Catalyst Chemical State during CO Oxidation Reaction on Cu(111) Studied with Ambient-Pressure X-ray Photoelectron Spectroscopy and Near Edge X-ray Adsorption Fine Structure Spectroscopy. , 2015, Journal of the American Chemical Society.

[232]  J. Monnier The selective epoxidation of non-allylic olefins over supported silver catalysts , 1997 .

[233]  Avelino Corma,et al.  Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. , 2005, Journal of the American Chemical Society.

[234]  Geoffrey I N Waterhouse,et al.  Oxygen chemisorption on an electrolytic silver catalyst: a combined TPD and Raman spectroscopic study , 2003 .

[235]  R. Behm,et al.  Activation of a Au/CeO2 catalyst for the CO oxidation reaction by surface oxygen removal/oxygen vacancy formation , 2007 .

[236]  F. Meunier,et al.  A critical analysis of the experimental evidence for and against a formate mechanism for high activity water-gas shift catalysts , 2011 .

[237]  C. Mullins,et al.  The effect of adsorbed water in CO oxidation on Au/TiO2(110) , 2011 .

[238]  J. Haubrich,et al.  Surface-mediated self-coupling of ethanol on gold. , 2009, Journal of the American Chemical Society.

[239]  J. Rodríguez,et al.  Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. , 2013, Accounts of chemical research.

[240]  M. Bäumer,et al.  Nanoporous Au: An Unsupported Pure Gold Catalyst? , 2008 .

[241]  Weixin Huang,et al.  Oxide Nanocrystal Model Catalysts. , 2016, Accounts of chemical research.

[242]  Weixin Huang,et al.  Influence of Speciation of Aqueous HAuCl4 on the Synthesis, Structure, and Property of Au Colloids , 2009 .

[243]  D. Goodman,et al.  Model studies in catalysis using surface science probes , 1995 .

[244]  M. Barteau,et al.  Ethylene epoxidation over silver and copper-silver bimetallic catalysts: I. Kinetics and selectivity , 2005 .

[245]  B. Delley,et al.  Density functional study of oxygen on Cu(100) and Cu(110) surfaces , 2010 .

[246]  Junfa Zhu,et al.  Synchrotron-Radiation Photoemission Study of Growth and Stability of Au Clusters on Rutile TiO2(110)-1 × 1 , 2009 .

[247]  Lai‐Sheng Wang,et al.  Chemisorption sites of CO on small gold clusters and transitions from chemisorption to physisorption. , 2005, The Journal of chemical physics.

[248]  L. Juurlink,et al.  A Comparison of CO Oxidation by Hydroxyl and Atomic Oxygen from Water on Low-Coordinated Au Atoms , 2016 .

[249]  Tian Cao,et al.  Crystal-plane-controlled surface chemistry and catalytic performance of surfactant-free Cu2 O nanocrystals. , 2013, ChemSusChem.

[250]  William T. Wallace,et al.  Carbon Monoxide Adsorption on Selected Gold Clusters: Highly Size-Dependent Activity and Saturation Compositions , 2000 .

[251]  Robert J. Davis,et al.  The important role of hydroxyl on oxidation catalysis by gold nanoparticles. , 2014, Accounts of chemical research.

[252]  Manos Mavrikakis,et al.  On the mechanism of low-temperature water gas shift reaction on copper. , 2008, Journal of the American Chemical Society.

[253]  O. Terasaki,et al.  Highly active iron oxide supported gold catalysts for CO oxidation: how small must the gold nanoparticles be? , 2010, Angewandte Chemie.

[254]  G. Henkelman,et al.  Model studies of heterogeneous catalytic hydrogenation reactions with gold. , 2013, Chemical Society reviews.

[255]  Zhiquan Jiang,et al.  Identification of Hydroxyl Groups on Au Surfaces Formed by H2O(a) + O(a) Reaction , 2014 .

[256]  R. Schlögl,et al.  The silver-oxygen system in catalysis: new insights by near ambient pressure X-ray photoelectron spectroscopy. , 2012, Physical chemistry chemical physics : PCCP.

[257]  K. Lahtonen,et al.  Oxygen adsorption-induced nanostructures and island formation on Cu{100}: Bridging the gap between the formation of surface confined oxygen chemisorption layer and oxide formation. , 2008, The Journal of chemical physics.

[258]  Xiaolin Zheng,et al.  Oxygen and CO Adsorption on Au/SiO2 Catalysts Prepared by Magnetron Sputtering: The Role of Oxygen Storage , 2010 .

[259]  J. Yates,et al.  Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites. , 2014, Accounts of chemical research.

[260]  Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides , 2011 .

[261]  C. Mullins,et al.  Enhanced Carbonate Formation on Gold , 2008 .

[262]  U. Landman,et al.  Gas-phase catalytic oxidation of CO by Au(2-). , 2001, Journal of the American Chemical Society.

[263]  R. Schlögl,et al.  Promoters in heterogeneous catalysis: the role of Cl on ethylene epoxidation over Ag , 2014 .

[264]  C. Yeh,et al.  Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures. , 2004, Chemical communications.

[265]  K. Prince,et al.  Water interaction with CeO2(111)/Cu(111) model catalyst surface , 2012 .

[266]  I. Chorkendorff,et al.  Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst. , 2014, Angewandte Chemie.

[267]  M. Haruta,et al.  EPR Study of CO and O2 Interaction with Supported Au Catalysts , 2001 .

[268]  D. Anjum,et al.  Surface Composition of Silver Nanocubes and Their Influence on Morphological Stabilization and Catalytic Performance in Ethylene Epoxidation. , 2015, ACS applied materials & interfaces.

[269]  Yong Lu,et al.  An excellent Au/meso-γ-Al2O3 catalyst for the aerobic selective oxidation of alcohols , 2011 .

[270]  C. Friend,et al.  Enhancement of O2 dissociation on Au111 by adsorbed oxygen: implications for oxidation catalysis. , 2005, Journal of the American Chemical Society.

[271]  Kangnian Fan,et al.  Ag–SiO2–Al2O3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol , 2004 .

[272]  S. Linic,et al.  Synthesis of Oxametallacycles from 2-Iodoethanol on Ag(111) and the Structure Dependence of Their Reactivity , 2002 .

[273]  J. Wagner,et al.  Water Gas Shift Catalysis , 2009 .

[274]  Ping Liu,et al.  Direct epoxidation of propylene over stabilized Cu(+) surface sites on titanium-modified Cu2O. , 2015, Angewandte Chemie.

[275]  Martin Muhler,et al.  CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction , 2001 .

[276]  R. Schlögl,et al.  The role of the oxide component in the development of copper composite catalysts for methanol synthesis. , 2013, Angewandte Chemie.

[277]  R. Seshadri,et al.  SYNTHESIS ROUTES FOR LARGE VOLUMES OF NANOPARTICLES , 2004 .

[278]  D. Meier,et al.  The influence of metal cluster size on adsorption energies: CO adsorbed on Au clusters supported on TiO2. , 2004, Journal of the American Chemical Society.

[279]  Thomas Risse,et al.  Charge-mediated adsorption behavior of CO on MgO-supported Au clusters. , 2010, Journal of the American Chemical Society.

[280]  P. Sautet,et al.  The adsorption of CO on Au(1 1 1) at elevated pressures studied by STM, RAIRS and DFT calculations , 2004 .

[281]  Qing Hua,et al.  Crystal-plane-controlled selectivity of Cu(2)O catalysts in propylene oxidation with molecular oxygen. , 2014, Angewandte Chemie.

[282]  S. Linic,et al.  Shape‐ and Size‐Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation , 2010 .

[283]  Shiqiang Wei,et al.  Understanding the deposition–precipitation process for the preparation of supported Au catalysts , 2010 .

[284]  R. Madix,et al.  CO adsorption and oxidation on oxygen precovered Cu(110) at 150 K: reactivity of two types of adsorbed atomic oxygen determined by scanning tunneling microscopy , 1996 .

[285]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[286]  Xiaojun Wu,et al.  CO self-promoting oxidation on nanosized gold clusters: triangular Au3 active site and CO induced O-O scission. , 2013, Journal of the American Chemical Society.

[287]  H. Löhneysen,et al.  Formation of copper oxide surface structures via pulse injection of air onto Cu(111) surfaces , 2012 .

[288]  J. Yates,et al.  Inhibition at perimeter sites of Au/TiO2 oxidation catalyst by reactant oxygen. , 2012, Journal of the American Chemical Society.

[289]  G. Faraci,et al.  Initial and Final-State Effects in Photoemission from Gold Clusters , 1992 .

[290]  G. Henkelman,et al.  Carbonate formation and decomposition on atomic oxygen precovered Au(111). , 2008, Journal of the American Chemical Society.

[291]  Carsten Stegelmann,et al.  Microkinetic analysis of transient ethylene oxidation experiments on silver , 2004 .

[292]  T. Risse,et al.  Crossover from three-dimensional to two-dimensional geometries of Au nanostructures on thin MgO(001) films: a confirmation of theoretical predictions. , 2007, Physical review letters.

[293]  G. Henkelman,et al.  Oxygen and hydroxyl species induce multiple reaction pathways for the partial oxidation of allyl alcohol on gold. , 2014, Journal of the American Chemical Society.

[294]  C. Mullins,et al.  Selective oxidation of propanol on Au(111): mechanistic insights into aerobic oxidation of alcohols. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[295]  Sida Luo,et al.  Gold Nano-size Effect in Au/SiO2 for Selective Ethanol Oxidation in Aqueous Solution , 2008 .

[296]  U. R. Pillai,et al.  Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide , 2006 .

[297]  C. Friend,et al.  Partial oxidation of propene on oxygen-covered Au(111). , 2006, The journal of physical chemistry. B.

[298]  C. Cheng,et al.  CO oxidation on unsupported Au55, Ag55, and Au25Ag30 nanoclusters. , 2008, The Journal of chemical physics.

[299]  M. Haruta,et al.  A Kinetic and Adsorption Study of CO Oxidation over Unsupported Fine Gold Powder and over Gold Supported on Titanium Dioxide , 1999 .

[300]  R. Lazzari,et al.  Size and Catalytic Activity of Supported Gold Nanoparticles: An in Operando Study during CO Oxidation , 2011 .

[301]  R. Gunnella,et al.  Phase transition of dissociatively adsorbed oxygen on Ag(001) , 2000 .

[302]  J. Nørskov,et al.  CO oxidation on rutile-supported au nanoparticles. , 2005, Angewandte Chemie.

[303]  S. Fabris,et al.  Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms. , 2009, Journal of the American Chemical Society.

[304]  Yadong Li,et al.  Catalysis based on nanocrystals with well-defined facets. , 2012, Angewandte Chemie.

[305]  M. S. Spencer,et al.  Mechanism of methanol synthesis from carbon monoxide and hydrogen on copper catalysts , 1989 .

[306]  G. Hutchings,et al.  Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation , 2008, Science.

[307]  A. Corma,et al.  A collaborative effect between gold and a support induces the selective oxidation of alcohols. , 2005, Angewandte Chemie.

[308]  J. Nørskov,et al.  Making gold less noble , 2000 .