Shrinkage Realized Kernels

We derive a shrinkage estimator of the integrated volatility within a semi parametric L-dependent microstructure noise model speci…ed at the highest frequency. The pro- posed estimator achieves an optimal signal-to-noise trade oby combining a consistent estimator with an inconsistent one. The new model has the implication that the …rst order autocorrelation of the noise converges to one as the sampling frequency goes to in…nity. It also allows the memory parameter L to increase with the sampling frequency. We derived estimators for the identi…able parameters of the model and con…m the good properties of the shrinkage estimator in simulation. An empirical study based on stocks listed in the Dow Jones Industrials con…rms that the microstructure noise is usually not IID with L increasing slower than the square root of the sampling frequency.

[1]  V. Corradi,et al.  Assessing Market Microstructure Effects via Realized Volatility Measures with an Application to the Dow Jones Industrial Average Stocks , 2009 .

[2]  C. Nelson,et al.  A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the ‘business cycle’☆ , 1981 .

[3]  N. Shephard,et al.  Realized Kernels in Practice: Trades and Quotes , 2009 .

[4]  Estimating Quadratic Variation Consistently in the Presence of Correlated Measurement Error , 2006 .

[5]  R. Oomen Comment (on JBES invited adress "Realized variance and market microstructure noise" by P.R. Hansen and A. Lunde). , 2006 .

[6]  Nour Meddahi,et al.  BOOTSTRAPPING REALIZED VOLATILITY , 2009 .

[7]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[8]  Joel Hasbrouck,et al.  Modeling Market Microstructure Time Series , 1996 .

[9]  K. French,et al.  Expected stock returns and volatility , 1987 .

[10]  Joel Hasbrouck,et al.  Assessing the Quality of a Security Market: A New Approach to Transaction-Cost Measurement , 1993 .

[11]  F. Diebold,et al.  Financial Institutions Center Parametric and Nonparametric Volatility Measurement , 2002 .

[12]  N. Meddahi,et al.  A theoretical comparison between integrated and realized volatility , 2002 .

[13]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[14]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[15]  Eric Ghysels,et al.  Rolling-Sample Volatility Estimators , 2002 .

[16]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[17]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[18]  N. Shephard,et al.  LIMIT THEOREMS FOR BIPOWER VARIATION IN FINANCIAL ECONOMETRICS , 2005, Econometric Theory.

[19]  Mark Podolskij,et al.  Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps , 2006 .

[20]  N. Shephard,et al.  Realised Kernels in Practice: Trades and Quotes , 2008 .

[21]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .

[22]  B. Hansen Least Squares Model Averaging , 2007 .

[23]  N. Shephard,et al.  Estimating quadratic variation using realized variance , 2002 .

[24]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[25]  Jean Jacod,et al.  Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9 , 2007 .

[26]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[27]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[28]  Federico M. Bandi,et al.  Microstructure Noise, Realized Variance, and Optimal Sampling , 2008 .

[29]  Kosuke Oya,et al.  Estimation and Testing for Dependence in Market Microstructure Noise , 2008 .

[30]  Bjørn Eraker Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices , 2004 .

[31]  B. Bollen,et al.  Estimating Daily Volatility in Financial Markets Utilizing Intraday Data , 2002 .

[32]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[33]  Mark W. Watson,et al.  Univariate detrending methods with stochastic trends , 1986 .

[34]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[35]  Yacine Ait-Sahalia,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[36]  Jim Gatheral,et al.  Zero-intelligence realized variance estimation , 2009, Finance Stochastics.

[37]  Michael Wolf,et al.  Subsampling for heteroskedastic time series , 1997 .

[38]  Hans R. Stoll,et al.  Inferring the Components of the Bid‐Ask Spread: Theory and Empirical Tests , 1989 .

[39]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[40]  Jeffrey R. Russell,et al.  Separating Microstructure Noise from Volatility , 2004 .

[41]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[42]  Donald W. K. Andrews,et al.  An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator , 1992 .

[43]  Predictive density estimators for daily volatility based on the use of realized measures , 2009 .