Calculated hovering helicopter flight dynamics with a circulation-controlled rotor

The flight dynamics of a hovering helicopter with a circulation-controlled rotor are analyzed. The influence of the rotor blowing coefficient on the calculated eigenvalues of the helicopter motion is examined for a range of values of the rotor lift and the blade flap frequency. The control characteristics of a helicopter with a circulation-controlled rotor are discussed. The principal effect of the blowing is a reduction in the rotor speed stability derivative. Above a critical level of blowing coefficient, which depends on the flap frequency and rotor lift, negative speed stability is produced and the dynamic characteristics of the helicopter are radically altered. The handling qualities of a helicopter with negative speed stability are probably unacceptable without a stability augmentation system.