Mass conservative reduced order modeling of a free boundary osmotic cell swelling problem

[1]  Christian Himpe,et al.  Hierarchical Approximate Proper Orthogonal Decomposition , 2016, SIAM J. Sci. Comput..

[2]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[3]  Mario Ohlberger,et al.  Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing , 2013 .

[4]  Eberhard Bänsch,et al.  Finite element discretization of the Navier–Stokes equations with a free capillary surface , 2001, Numerische Mathematik.

[5]  Bernard Haasdonk,et al.  A POD-EIM reduced two-scale model for crystal growth , 2015, Adv. Comput. Math..

[6]  Mario Ohlberger,et al.  The method of freezing as a new tool for nonlinear reduced basis approximation of parameterized evolution equations , 2013, 1304.4513.

[7]  Mario Ohlberger,et al.  Error Control for the Localized Reduced Basis Multiscale Method with Adaptive On-Line Enrichment , 2015, SIAM J. Sci. Comput..

[8]  Jens Lang,et al.  POD-Galerkin reduced-order modeling with adaptive finite element snapshots , 2016, J. Comput. Phys..

[9]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[10]  Avner Friedman,et al.  Free boundary problems in biology , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[12]  Andreas Raźtz Diffuse-Interface Approximations of Osmosis Free Boundary Problems , 2016 .

[13]  Anthony Nouy,et al.  Low-rank methods for high-dimensional approximation and model order reduction , 2015, 1511.01554.

[14]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal Stopping and Free-Boundary Problems , 2006 .

[15]  Martijn M. Zaal Cell swelling by osmosis: A variational approach , 2012, 1209.1920.

[16]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART I : COHERENT STRUCTURES , 2016 .

[17]  G. Prokert,et al.  Classical solutions for a one-phase osmosis model , 2012 .

[18]  Karsten Urban,et al.  Reduced Basis Methods Based Upon Adaptive Snapshot Computations , 2014, 1407.1708.

[19]  Youngsoo Choi,et al.  Conservative model reduction for finite-volume models , 2017, J. Comput. Phys..

[20]  Stefan Volkwein Optimal Control of a Phase‐Field Model Using Proper Orthogonal Decomposition , 2001 .

[21]  Christoph Lehrenfeld,et al.  An Eulerian finite element method for PDEs in time-dependent domains , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[22]  Well‐posedness of a parabolic free boundary problem driven by diffusion and surface tension , 2015 .

[23]  Masayuki Yano,et al.  A Minimum-Residual Mixed Reduced Basis Method: Exact Residual Certification and Simultaneous Finite-Element Reduced-Basis Refinement , 2016 .

[24]  A. Quarteroni,et al.  Reduced Basis Methods for Partial Differential Equations: An Introduction , 2015 .

[25]  J. Schöberl C++11 Implementation of Finite Elements in NGSolve , 2014 .

[26]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[27]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[28]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[29]  G. Prokert,et al.  Stability of equilibria for a two-phase osmosis model , 2014 .

[30]  René Milk,et al.  pyMOR - Generic Algorithms and Interfaces for Model Order Reduction , 2015, SIAM J. Sci. Comput..

[31]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[32]  Mario Ohlberger,et al.  Reduced Basis Methods: Success, Limitations and Future Challenges , 2015, 1511.02021.

[33]  J. Stefan,et al.  Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere , 1891 .

[34]  Variational Modeling of Parabolic Free Boundary Problems , 2013 .

[35]  Gianluigi Rozza,et al.  POD–Galerkin monolithic reduced order models for parametrized fluid‐structure interaction problems , 2016 .

[36]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[37]  Gianluigi Rozza,et al.  A Reduced Basis Model with Parametric Coupling for Fluid-Structure Interaction Problems , 2012, SIAM J. Sci. Comput..

[38]  ANDREAS RÄTZ,et al.  Diffuse-Interface Approximations of Osmosis Free Boundary Problems , 2016, SIAM J. Appl. Math..

[39]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[40]  Karsten Urban,et al.  Reduced basis methods with adaptive snapshot computations , 2017, Adv. Comput. Math..

[41]  K. Frischmuth,et al.  Numerical Analysis of the Closed Osmometer Problem , 1999 .

[42]  A. Cohen,et al.  Model Reduction and Approximation: Theory and Algorithms , 2017 .

[43]  Gianluigi Rozza,et al.  A Reduced Basis Method for Evolution Schemes with Parameter-Dependent Explicit Operators , 2008 .

[44]  M. Hinze,et al.  The combination of POD model reduction with adaptive finite element methods in the context of phase field models , 2017 .

[45]  Charbel Farhat,et al.  Reduction of nonlinear embedded boundary models for problems with evolving interfaces , 2014, J. Comput. Phys..

[46]  Antonio Huerta,et al.  Chapter 14 Arbitrary Lagrangian-Eulerian Methods , 2004 .