Neuronal responsiveness to three-dimensional motion in cat posteromedial lateral suprasylvian cortex

[1]  R. Wurtz,et al.  Medial Superior Temporal Area Neurons Respond to Speed Patterns in Optic Flow , 1997, The Journal of Neuroscience.

[2]  H Sherk,et al.  Simulated optic flow and extrastriate cortex. I. Optic flow versus texture. , 1997, Journal of neurophysiology.

[3]  H. Sherk,et al.  Simulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli. , 1997, Journal of neurophysiology.

[4]  W. Burke,et al.  Areas PMLS and 21a of cat visual cortex: two functionally distinct areas. , 1996, Cerebral cortex.

[5]  H. Sherk,et al.  Are the preferred directions of neurons in cat extrastriate cortex related to optic flow? , 1995, Visual Neuroscience.

[6]  J A Movshon,et al.  Spatial and temporal analysis by neurons in the representation of the central visual field in the cat's lateral suprasylvian visual cortex , 1990, Visual Neuroscience.

[7]  J. Movshon,et al.  Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. , 1990, Journal of neurophysiology.

[8]  G A Orban,et al.  Selectivity of cat area 18 neurons for direction and speed in depth. , 1990, Journal of neurophysiology.

[9]  K. Tanaka,et al.  Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[10]  Michael W. von Grünau,et al.  Visual receptive field properties in the posterior suprasylvian cortex of the cat: A comparison between the areas PMLS and PLLS , 1987, Vision Research.

[11]  Takashi Hamada,et al.  Neural response to the motion of textures in the lateral suprasylvian area of cats , 1987, Behavioural Brain Research.

[12]  J. Rauschecker,et al.  Centrifugal organization of direction preferences in the cat's lateral suprasylvian visual cortex and its relation to flow field processing , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  C. Blakemore,et al.  Spatial and temporal selectivity in the suprasylvian visual cortex of the cat , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  K. Toyama,et al.  The responsiveness of Clare-Bishop neurons to size cues for motion stereopsis , 1986, Neuroscience Research.

[15]  K. Toyama,et al.  The responsiveness of Clare-Bishop neurons to motion cues for motion stereopsis , 1986, Neuroscience Research.

[16]  D. Burr,et al.  Spatial and temporal properties of neurons of the lateral suprasylvian cortex of the cat. , 1986, Journal of neurophysiology.

[17]  B. V. Updyke,et al.  Retinotopic organization within the cat's posterior suprasylvian sulcus and gyrus , 1986, The Journal of comparative neurology.

[18]  Yukio Komatsu,et al.  Responsiveness of Clare-Bishop neurons to visual cues associated with motion of a visual stimulus in three-dimensional space , 1985, Vision Research.

[19]  T. L. Harrington,et al.  Neural mechanisms of space vision in the parietal association cortex of the monkey , 1985, Vision Research.

[20]  Earl L. Smith,et al.  Binocular properties of lateral suprasylvian cortex are not affected by neonatal corpus callosum section , 1983, Brain Research.

[21]  D. Regan,et al.  Neurons in cat visual cortex tuned to the direction of motion in depth: Effect of positional disparity , 1982, Vision Research.

[22]  K. Toyama,et al.  Responses of clare-bishop neurones to three dimensional movement of a light stimulus , 1982, Vision Research.

[23]  M. Cynader,et al.  Neurons in cat visual cortex tuned to the direction of motion in depth: effect of stimulus speed. , 1982, Investigative ophthalmology & visual science.

[24]  G. Poggio,et al.  Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey , 1981, The Journal of physiology.

[25]  D. Regan,et al.  Visual perception of changing size: The effect of object size , 1979, Vision Research.

[26]  D. Regan,et al.  Binocular and monocular stimuli for motion in depth: Changing-disparity and changing-size feed the same motion-in-depth stage , 1979, Vision Research.

[27]  J. Pettigrew,et al.  Improved use of tapetal reflection for eye-position monitoring. , 1979, Investigative ophthalmology & visual science.

[28]  J. Pettigrew,et al.  A neurophysiological determination of the vertical horopter in the cat and owl , 1979, The Journal of comparative neurology.

[29]  L. Palmer,et al.  The retinotopic organization of lateral suprasylvian visual areas in the cat , 1978, The Journal of comparative neurology.

[30]  P. D. Spear,et al.  Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. , 1975, Journal of neurophysiology.

[31]  D Regan,et al.  The relation between discrimination and sensitivity in the perception of motion in depth. , 1975, The Journal of physiology.

[32]  D. Regan,et al.  Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space , 1973, The Journal of physiology.

[33]  D. Hubel,et al.  Visual area of the lateral suprasylvian gyrus (Clare—Bishop area) of the cat , 1969, The Journal of physiology.

[34]  P. O. Bishop,et al.  Some quantitative aspects of the cat's eye: axis and plane of reference, visual field co‐ordinates and optics , 1962, The Journal of physiology.

[35]  M. Cynader,et al.  Neurones in cat parastriate cortex sensitive to the direction of motion in three‐dimensional space , 1978, The Journal of physiology.