High-quality 2D mesh generation without obtuse and small angles

Abstract In this paper, we present an efficient method to eliminate the obtuse triangles for high quality 2D mesh generation. Given an initialization (e.g., from Centroidal Voronoi Tessellation—CVT), a limited number of point insertions and removals are performed to eliminate obtuse or small angle triangles. A mesh smoothing and optimization step is then applied. These steps are repeated till a desired good quality mesh is reached. We tested our algorithm on various 2D polygonal domains and verified that our algorithm always converges after inserting a few number of new points, and generates high quality triangulation with no obtuse triangles.

[1]  Marshall W. Bern,et al.  Linear-size nonobtuse triangulation of polygons , 1994, SCG '94.

[2]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[3]  Jianwei Guo,et al.  Efficient triangulation of Poisson-disk sampled point sets , 2014, The Visual Computer.

[4]  Mohamed S. Ebeida,et al.  Disk Density Tuning of a Maximal Random Packing , 2016, Comput. Graph. Forum.

[5]  Dong-Ming Yan,et al.  Gap processing for adaptive maximal poisson-disk sampling , 2012, TOGS.

[6]  Pierre Alliez,et al.  Optimizing Voronoi Diagrams for Polygonal Finite Element Computations , 2010, IMR.

[7]  Michael Holst,et al.  Efficient mesh optimization schemes based on Optimal Delaunay Triangulations , 2011 .

[8]  Damrong Guoy,et al.  Well-Centered Triangulation , 2008, SIAM J. Sci. Comput..

[9]  Sergey Korotov,et al.  Global and local refinement techniques yielding nonobtuse tetrahedral partitions , 2005 .

[10]  Dong-Ming Yan,et al.  Error-bounded surface remeshing with minimal angle elimination , 2016, SIGGRAPH Posters.

[11]  Lin Lu,et al.  Global Optimization of Centroidal Voronoi Tessellation with Monte Carlo Approach , 2012, IEEE Transactions on Visualization and Computer Graphics.

[12]  Pierre Alliez,et al.  Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement , 2017, IEEE Transactions on Visualization and Computer Graphics.

[13]  R. Nicolaides Direct discretization of planar div-curl problems , 1992 .

[14]  Alper Üngör,et al.  Computing Triangulations without Small and Large Angles , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.

[15]  Robert J. Renka,et al.  Mesh improvement by minimizing a weighted sum of squared element volumes , 2015 .

[16]  Pierre Alliez,et al.  Interleaving Delaunay Refinement and Optimization for 2D Triangle Mesh Generation , 2007, IMR.

[17]  Alper Üngör,et al.  Computing Acute and Non-obtuse Triangulations , 2007, CCCG.

[18]  Mohamed S. Ebeida,et al.  Efficient and good Delaunay meshes from random points , 2011, Comput. Aided Des..

[19]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[20]  Ashraf El-Hamalawi,et al.  Mesh Generation – Application to Finite Elements , 2001 .

[21]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[22]  Yu Wang,et al.  Generalized edge-weighted centroidal Voronoi tessellations for geometry processing , 2012, Comput. Math. Appl..

[23]  V. T. Rajan Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..

[24]  Dong-Ming Yan,et al.  Non-Obtuse Remeshing with Centroidal Voronoi Tessellation , 2016, IEEE Transactions on Visualization and Computer Graphics.

[25]  Brenda S. Baker,et al.  Nonobtuse triangulation of polygons , 1988, Discret. Comput. Geom..