An Active Testing Model for Tracking Roads in Satellite Images

We present a new approach for tracking roads from satellite images, and thereby illustrate a general computational strategy ("active testing") for tracking 1D structures and other recognition tasks in computer vision. Our approach is related to recent work in active vision on "where to look next" and motivated by the "divide-and-conquer" strategy of parlour games. We choose "tests" (matched filters for short road segments) one at a time in order to remove as much uncertainty as possible about the "true hypothesis" (road position) given the results of the previous tests. The tests are chosen online based on a statistical model for the joint distribution of tests and hypotheses. The problem of minimizing uncertainty (measured by entropy) is formulated in simple and explicit analytical terms. At each iteration new image data are examined and a new entropy minimization problem is solved (exactly), resulting in a new image location to inspect, and so forth. We report experiments using panchromatic SPOT satellite imagery with a ground resolution of ten meters.

[1]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[2]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[3]  M. Garey Optimal Binary Identification Procedures , 1972 .

[4]  Y. Chien,et al.  Pattern classification and scene analysis , 1974 .

[5]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[6]  G. Vanderbrug,et al.  Line Detection in Satellite Imagery , 1976, IEEE Transactions on Geoscience Electronics.

[7]  Ronald L. Rivest,et al.  Constructing Optimal Binary Decision Trees is NP-Complete , 1976, Inf. Process. Lett..

[8]  R. Tosic An optimal search procedure , 1980 .

[9]  Martin A. Fischler,et al.  Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique☆ , 1981 .

[10]  Satosi Watanabe,et al.  Pattern recognition as a quest for minimum entropy , 1981, Pattern Recognit..

[11]  Ramakant Nevatia,et al.  Locating Structures in Aerial Images , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Pramod K. Varshney,et al.  Application of information theory to the construction of efficient decision trees , 1982, IEEE Trans. Inf. Theory.

[13]  King-Sun Fu,et al.  Automatic classification of cervical cells using a binary tree classifier , 1983, Pattern Recognition.

[14]  M. Kurzynski The optimal strategy of a tree classifier , 1983 .

[15]  Marek W. Kurzysnki The optimal strategy of a tree classifier , 1983, Pattern Recognit..

[16]  Ching Y. Suen,et al.  Application of a Multilayer Decision Tree in Computer Recognition of Chinese Characters , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Ching Y. Suen,et al.  Analysis and Design of a Decision Tree Based on Entropy Reduction and Its Application to Large Character Set Recognition , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Patchigolla Kiran Kumar,et al.  A Survey of Some Results in Stochastic Adaptive Control , 1985 .

[19]  H. Chernoff Sequential Analysis and Optimal Design , 1987 .

[20]  Sujata Das Automatic detection of roads in spot satellite images , 1988 .

[21]  Fangju Wang,et al.  A knowledge-based system for highway network extraction , 1988 .

[22]  Thomas C. Henderson,et al.  Towards The Automatic Generation Of Recognition Strategies , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[23]  Masahiro Miyakawa Criteria for Selecting a Variable in the Construction of Efficient Decision Trees , 1989, IEEE Trans. Computers.

[24]  Moncef Daoud,et al.  Une application de la théorie des graphes à l'extraction automatique des réseaux de communication dans les images du satellite spot , 1989 .

[25]  Christian M. Ernst,et al.  Multi-armed Bandit Allocation Indices , 1989 .

[26]  M. A. Serendero Extraction d'informations symboliques en imagerie SPOT : réseaux de communication et agglomérations , 1989 .

[27]  J. Bather,et al.  Multi‐Armed Bandit Allocation Indices , 1990 .

[28]  Philip A. Chou,et al.  Optimal Partitioning for Classification and Regression Trees , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[30]  Julian E. Boggess,et al.  Identification of Roads in Satellite Imagery Using Artificial Neural Networks: A Contextual Approach , 1993 .

[31]  Lilly Spirkovska Three-dimensional object recognition using similar triangles and decision trees , 1993, Pattern Recognit..

[32]  Steven Skiena,et al.  Decision trees for geometric models , 1993, SCG '93.

[33]  Josiane Zerubia,et al.  A Curvature-Dependent Energy Function for Detecting Lines in Satellite Images , 1993 .

[34]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[35]  Bruno Jedynak Modeles stochastiques et methodes deterministes pour extraire les routes des images de la terre vues du ciel , 1995 .

[36]  S. Morishita On Classi cation and Regression , 1998 .