A survey of thermal energy harvesting techniques and interface circuitry

Emerging technology in semiconductor devices and circuits has enabled ultra-low power systems in medical, structural (bridges), and hard to reach places which fueled the energy scavenging research and its interface circuitry. The energy can be harvested from ambient sources such as vibration, wireless, thermal and solar. To harvest the energy, special interface circuit needs to be designed for suitable energy conversion such as DC-DC converters, power management unit, and storage elements. In this paper, we present a survey about the state-of-the-art thermal energy harvesting systems focusing on the interface circuitry, and explaining the tradeoffs in human body-based harvesting applications.

[1]  J. M. Damaschke Design of a low-input-voltage converter for thermoelectric generator , 1997 .

[2]  Liang-Hung Lu,et al.  50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting , 2013, IEEE Journal of Solid-State Circuits.

[3]  Kai Strunz,et al.  A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting , 2010, IEEE Journal of Solid-State Circuits.

[4]  G. Cho,et al.  A 40 mV Transformer-Reuse Self-Startup Boost Converter With MPPT Control for Thermoelectric Energy Harvesting , 2012, IEEE Journal of Solid-State Circuits.

[5]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply , 2001 .

[6]  Fan Zhang,et al.  A batteryless 19μW MICS/ISM-band energy harvesting body area sensor node SoC , 2012, 2012 IEEE International Solid-State Circuits Conference.

[7]  T. Karnik,et al.  Area-efficient linear regulator with ultra-fast load regulation , 2005, IEEE Journal of Solid-State Circuits.

[8]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[9]  Chulwoo Kim,et al.  A DC-DC boost converter with variation tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications , 2014, 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC).

[10]  Anantha Chandrakasan,et al.  A Battery-Less Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage , 2010, IEEE Journal of Solid-State Circuits.

[11]  Hun Sik Han,et al.  Performance measurement and analysis of a thermoelectric power generator , 2010, 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[12]  Julien Penders,et al.  Energy Harvesting for Autonomous Wireless Sensor Networks , 2010, IEEE Solid-State Circuits Magazine.

[13]  J. Zhang,et al.  An ultra-low-power digitally-controlled buck converter IC for cellular phone applications , 2004, Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2004. APEC '04..

[14]  Cyril Condemine,et al.  Efficient Power Management Circuit: From Thermal Energy Harvesting to Above-IC Microbattery Energy Storage , 2008, IEEE J. Solid State Circuits.

[15]  S. Bandyopadhyay,et al.  Platform Architecture for Solar, Thermal, and Vibration Energy Combining With MPPT and Single Inductor , 2011, IEEE Journal of Solid-State Circuits.

[16]  Chris Van Hoof,et al.  Capacitive Power Management Circuit for Micropower Thermoelectric Generators With a 1.4 $\mu$A Controller , 2009, IEEE Journal of Solid-State Circuits.

[17]  Koichi Ishida,et al.  Startup Techniques for 95 mV Step-Up Converter by Capacitor Pass-On Scheme and ${\rm V}_{\rm TH}$-Tuned Oscillator With Fixed Charge Programming , 2012, IEEE Journal of Solid-State Circuits.

[18]  Aleksandar Milenkovic,et al.  Journal of Neuroengineering and Rehabilitation Open Access a Wireless Body Area Network of Intelligent Motion Sensors for Computer Assisted Physical Rehabilitation , 2005 .

[19]  Christofer Hierold,et al.  Flexible micro thermoelectric generator based on electroplated Bi2+xTe3−x , 2008, 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS.

[20]  Naveen Verma,et al.  Ultralow-power electronics for biomedical applications. , 2008, Annual review of biomedical engineering.

[21]  B. R. Gregoire,et al.  A Compact Switched-Capacitor Regulated Charge Pump Power Supply , 2006, IEEE Journal of Solid-State Circuits.

[22]  A. Chandrakasan,et al.  Out of Thin Air: Energy Scavenging and the Path to Ultralow-Voltage Operation , 2012, IEEE Solid-State Circuits Magazine.

[23]  C. B. Vining An inconvenient truth about thermoelectrics. , 2009, Nature materials.

[24]  Anantha Chandrakasan,et al.  Platform architecture for solar, thermal and vibration energy combining with MPPT and single inductor , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[25]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.