Image filter evolution on the Xilinx Zynq Platform

The limitations of reconfigurable chips have always raised barriers for evolvable hardware. Zynq-7000 all programmable system-on-chip, the recent innovation in the reconfigurable field offers new possibilities for bypassing once again these barriers. In this paper, evolvable hardware implementations are considered on this new Zynq platform. The possibilities of the platform are demonstrated by evolutionary design of switching image filters. The investigated implementations include virtual reconfigurable circuits and the use of dynamic partial reconfiguration. The achieved results demonstrate the advantages and disadvantages of the Zynq platform. The observations are intended to be useful for designers who are going to develop evolvable hardware on this new platform.

[1]  Moritoshi Yasunaga,et al.  On-Chip Evolution Using a Soft Processor Core Applied to Image Recognition , 2006, First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06).

[2]  TomasM art ´ inek An Evolvable Image Filter: Experimental Evaluation of a Complete Hardware Implementation in FPGA , 2005 .

[3]  Adrian Thompson,et al.  Silicon evolution , 1996 .

[4]  Lukás Sekanina Evolvable Hardware , 2012, Handbook of Natural Computing.

[5]  Zdenÿek Vaÿ ´ õÿ HARDWARE ACCELERATOR OF CARTESIAN GENETIC PROGRAMMING WITH MULTIPLE FITNESS UNITS , 2010 .

[6]  A. A VHDL Core for Intrinsic Evolution of Discrete Time Filters with Signal Feedback , 2005 .

[7]  Jin Wang,et al.  Design and implementation of a virtual reconfigurable architecture for different applications of intrinsic evolvable hardware , 2008, IET Comput. Digit. Tech..

[8]  Lorenz Huelsbergen,et al.  Evolving oscillators in silico , 1999, IEEE Trans. Evol. Comput..

[9]  Eduardo de la Torre,et al.  Implementation techniques for evolvable HW systems: virtual VS. dynamic reconfiguration , 2012, 22nd International Conference on Field Programmable Logic and Applications (FPL).

[10]  Hugo de Garis,et al.  The second NASA/DoD workshop on evolvable hardware , 2001, IEEE Trans. Evol. Comput..

[11]  Gunnar Tufte,et al.  Evolving an adaptive digital filter , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[12]  Lukás Sekanina,et al.  Towards evolvable systems based on the Xilinx Zynq platform , 2013, 2013 IEEE International Conference on Evolvable Systems (ICES).

[13]  Andrew M. Tyrrell,et al.  Challenges of evolvable hardware: past, present and the path to a promising future , 2011, Genetic Programming and Evolvable Machines.

[14]  Kyrre Glette,et al.  Evolutionary design of efficient and robust switching image filters , 2011, 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).

[15]  Andres Upegui,et al.  Evolving Hardware with Self-reconfigurable connectivity in Xilinx FPGAs , 2006, First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06).

[16]  Lukas Sekanina,et al.  An evolvable hardware system in Xilinx Virtex II Pro FPGA , 2007 .

[17]  Lukás Sekanina Virtual Reconfigurable Circuits for Real-World Applications of Evolvable Hardware , 2003, ICES.

[18]  Marco D. Santambrogio,et al.  A direct bitstream manipulation approach for Virtex4-based evolvable systems , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[19]  Andrew M. Tyrrell,et al.  Safe intrinsic evolution of Virtex devices , 2000, Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.

[20]  Eduardo de la Torre,et al.  Evolvable 2D computing matrix model for intrinsic evolution in commercial FPGAs with native reconfiguration support , 2011, 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).